NUST MISIS, Russia, Moscow

Lecture 11, 18.03.2020

Tracking detectors

Olaf Steinkamp University of Zurich & NUST MISiS olafs@physik.uzh.ch

Particle Physics Experiments

Accelerate a beam of (stable & charged) particles to high energies

 \rightarrow electrons/positrons, protons/antiprotons, heavy ions

Bring them into collision with

another beam of particles: "collider experiment" e.g. ATLAS, CMS **a target at rest: "fixed-target experiment"** e.g. SHiP

Particle

Measure the properties of the long-lived particles that are created in the collision

Reconstruct short-lived particles using relativistic kinematics

University of Zurich^{uz}^H

LHCb Experiment

A collider experiment that looks like a fixed target experiment

Main goal is to study b and c hadrons

 \rightarrow are produced mostly at small angles wrt beam axis

Detector Components

Position-sensitive detectors

→ production vertices and flight path of charged particles → decay vertices of short-lived particles

Position sensitive detectors in a magnetic field

 \rightarrow momenta of charged particles

Calorimeters

 \rightarrow energy of charged and neutral particles

Cherenkov counters, Transition radiation counters, Time-of-flight counters, ...

→ speed of charged particles (momentum + speed → mass → particle type)

Momentum measurement

Moving charge in magnetic field \rightarrow Lorentz force $\vec{F}_L = q \cdot \vec{v} \times \vec{B}$

→ forces particle onto circular trajectory around field lines

 $\frac{\boldsymbol{m}\cdot\boldsymbol{v}^2}{\boldsymbol{r}} = \boldsymbol{q}\cdot\boldsymbol{v}\cdot\boldsymbol{B}$ $\boldsymbol{p} = \boldsymbol{q}\cdot\boldsymbol{B}\cdot\boldsymbol{r}$

→ measure bending radius of particle trajectory in a known magnetic field

 \rightarrow for a particle with $q = \pm e$

 $p [GeV] \approx 0.3 \cdot B [T] \cdot r [m]$

Momentum measurement

Typical collider experiment: solenoid or toroid magnet

→ field lines parallel to beam cylindrical tracking layers inside the magnet

SHil

Science and Technolog

Typical fixed-target experiment: dipole magnet

→ field lines orthogonal to beam
 planar tracking detectors
 before and after the magnet

Momentum resolution (I)

"Gluckstern equation" for N equidistant measurements:

$$\frac{\sigma(p)}{p} = \sqrt{\frac{720}{N+4}} \cdot \sigma_x \cdot \frac{p}{0.3 B L^2}$$

Relative momentum resolution

→ degrades linearly with increasing momentum
 → improves linearly with spatial resolution of the detector
 → improves linearly with the strength of the magnetic field
 → improves quadratically with the length of the measured track segment

Main reason for the large size of high-energy physics experiments

Momentum resolution (II)

Particle trajectory disturbed due to multiple scattering in the material of the detector

Causes deterioration of momentum resolution

 $\frac{\boldsymbol{\sigma}(\boldsymbol{p})}{\boldsymbol{p}} = \frac{\boldsymbol{0.2} \cdot \sqrt{\boldsymbol{L}/\boldsymbol{X}_{0}}}{\boldsymbol{\beta} \cdot \boldsymbol{B} \cdot \boldsymbol{L}}$

- → limits momentum resolution at low momenta (small β)
 - → material often dominated by supports, cables, etc ("dead material")

Momentum resolution (III)

ATLAS tracking system

SHiP

918-2018

National University of Science and Technology

LHCb tracking system

Momentum resolution (IV)

Υ resonances in ATLAS

Υ resonances in LHCb

Hadronic Interactions

Hadrons also undergo nuclear interactions in detector material

→ large kink in trajectory or shower of secondary particles → loss in reconstruction efficiency

Example CMS:

Hadronic Interactions

Hadrons also undergo nuclear interactions in detector material

- \rightarrow large kink in trajectory or shower of secondary particles
 - \rightarrow loss in reconstruction efficiency

Example CMS:

Requirements

Spatial hit resolution

 \rightarrow vertex resolution, momentum resolution, ...

Granularity

- \rightarrow ability to separate two particles that pass the detector close in space **Rate capability**
 - \rightarrow ability to separate two particles that pass the detector close in time **Material budget**

 \rightarrow minimize multiple scattering, hadronic interactions

Radiation hardness

→ performance degradation from degradation of detector material Cost !!!

 \rightarrow often dominated by readout electronics

(number of channels, amount of information per channel)

Requirements

Close to interaction point: highest particle density ...

- $\rightarrow\,$ need fine granularity, excellent position resolution, radiation hardness
 - ... but small tracking volume
 - \rightarrow can afford expensive detectors with fine granularity, many readout channels
 - Further away: large tracking volume ...
 - \rightarrow need cost effective detector
 - ... but lower particle density
- \rightarrow can afford coarser granularity, lower position resolution

Early tracking detectors

E.g. cloud chamber (Wilson, 1912): **Vessel filled with supersaturated water vapour** \rightarrow charged particle creates ionisation clusters \rightarrow ionisation clusters act as condensation nuclei \rightarrow trail of water droplets along particle trajectory Photograph trails through windows in the vessel \rightarrow spatial resolution ~ 100 µm \rightarrow estimate particle energy from density of droplets Most important experimental tool until 1950s, but \rightarrow low rate capability \rightarrow tedious manual analysis of photographs

discovery of positron (Anderson, 1932)

Modern tracking detectors

Charged particle interacts with detector material \rightarrow creates free charge carriers (e.g. by ionization) Apply electric field across detector volume \rightarrow collect charges on segmented electrodes Electronically amplify & shape signal pulse **Digitize the signal** \rightarrow discriminator: hit / no hit \rightarrow ADC: encode pulse height \rightarrow TDC: encode signal arrival time Transfer digital data to a computer farm for processing and storage

Cylindrical tube, filled with gas mixture, thin wire strung along its centre

High voltage (typically 1– 2 kV**) between wire and outer wall**

Charged particle ionizes gas atoms

 \rightarrow electrons drift towards the wire

Very high electric field close to the wire

 → electrons gain enough energy to ionize secondary atoms
 → charge avalanche
 → measurable voltage pulse on wire

Tracking detector: several layers of such drift tubes

Tracking detector: several layers of such drift tubes

Tracking detector: several layers of such drift tubes

Measure drift time of electrons \rightarrow < 200 μ m spatial resolution

→ operated reliably
 → good spatial resolution ≈ 200 µm
 → good hit efficiency > 99 %
 → is being replaced by a scintillating fibre tracker in the ongoing LHCb upgrade

University of Zurich¹²¹⁴

Drift time of electrons up to \approx 40 ns, but bunch crossings at the LHC every 25 ns → read out overlapping events

Drift time of electrons up to \approx 40 ns, but bunch crossings at the LHC every 25 ns \rightarrow read out overlapping events

Occupancy in the inner part of the detector → up to one in 4 straws is hit on average → at the limit for efficient track reconstruction

Primary ionization is a statistical process, discrete ionization clusters generated along the particle trajectory

Number of clusters for a given pathlength follows a Poisson distribution

 $\boldsymbol{P}(\boldsymbol{k} \mid \boldsymbol{\mu}) = \frac{\boldsymbol{\mu}^{\boldsymbol{k}}}{\boldsymbol{k} \boldsymbol{l}} \cdot \boldsymbol{e}^{-\boldsymbol{\mu}}$

→ probability to create at least one cluster $\boldsymbol{\epsilon} = \boldsymbol{1} - \boldsymbol{P}(\boldsymbol{0} \,|\, \boldsymbol{\mu}) = \boldsymbol{1} - \boldsymbol{e}^{-\boldsymbol{\mu}}$

Density p I_0 n_T W n_p Gas [eV] [eV] [q/cm³] [cm⁻¹] [cm⁻¹] H_2 8.99 x 10⁻⁵ 15.4 37 9.2 5.2 5.9 He 1.78 x 10⁻⁴ 24.6 41 7.8 N_2 1.23 x 10⁻³ 15.5 35 10 56 22 O_2 1.43 x 10⁻³ 12.2 31 73 9.00 x 10⁻⁴ 21.6 36 12 39 Ne 1.78 x 10⁻³ 15.8 29 Ar 26 94 22 3.74 x 10⁻³ 14.0 24 Kr 192 22 Xe 5.89 x 10⁻³ 12.1 44 307 CO_2 1.98 x 10⁻³ 13.7 33 34 91 CH₄ 7 17 x 10⁻⁴ 13.1 28 16 53 C_4H_{10} 2.67 x 10⁻³ 10.8 23 46 195

 \rightarrow for detection efficiency ϵ > 99% need μ ≥ 5

For Argon (at 1 bar): μ = 29 primary clusters / cm

→ need ≥ 1.7 mm path length to reach $\epsilon \ge 99\%$

→ need drift cell with \ge 5 mm diameter

University of Zurich[™]

Wire Ageing

Creation of chemical radicals in the charge avalanche close to the wire \rightarrow polymerization of carbohydrates **Formation of deposits on wires** \rightarrow loss of gas gain **Formation of whiskers** \rightarrow discharges, noise, HV breakdown Very small contamination of the drift gas can have disastrous consequences \rightarrow typical problem: outgassing of glues **Extensive studies, lists of "allowed" materials** \rightarrow but one mistake can destroy the detector

University of Zurich^{uz+}

Micro-Pattern Gaseous Detectors

Gas Electron Multiplier ("GEM"): Thin Kapton foil (electrically insulating polyimide film) with copper coating on both sides Regular array of fine holes (75 μm Ø, 140 μm distance) etched through the foil Voltage applied between the two sides

- \rightarrow high electric field inside the holes
 - \rightarrow gas amplification

Micro-Pattern Gaseous Detectors

Readout granularity independent of the thickness of the gas layer

No wires \rightarrow no wire ageing

Usually stack several GEM foils to obtain high gas gain with low voltage

Triple-GEM detectors e.g. employed in inner part of LHCb muon system

415 V per GEM foil \rightarrow total gain ~ 4'300

Disadvantage: inclined tracks can give signals on many readout strips

Silicon tracking detectors

Segmented reverse biased p-n junction (diode)

 Simplest device: n-doped monocrystalline silicon wafer, p-doped implants at surface
 → strips with pitch 250 – 20 µm
 → resolution 50 to a few µm
 → or pixels for even finer granularity
 Apply reverse bias voltage

 \rightarrow electric field through the wafer

Ionizing particle creates electron-hole pairs in the silicon lattice

- \rightarrow electrons and holes drift to surface
- \rightarrow induce signals on the *p*-doped implants

p-n Junction

n-side: doping with Group-V elements \rightarrow loosely bound electrons (e) in silicon lattice *p*-side: doping with Group-III elements \rightarrow loosely bound "holes" (h) in silicon lattice e/h density gradient across the junction \rightarrow diffusion across the junction **Depletion zone without free** charge-carriers \rightarrow *p*-side: *e* absorbed by acceptor atoms \rightarrow *n*-side: *h* absorbed by donor atoms **Movement of electric charge**

 \rightarrow electric field across the junction

p-n Junction

University of

Zurich

Equilibrium between diffusion and Coulomb force Electric field and potential barrier from Coulomb equation

$$-\frac{d^2 V}{dx^2} = \frac{dE}{dx} = \frac{\rho(x)}{\varepsilon}$$

→ intrinsic potential barrier and thickness of depletion zone:

$$V_{\rm bi} = \frac{e}{2\epsilon} \cdot (N_{\rm d} d_n^2 + N_{\rm a} d_p^2)$$

National University of

Science and Technology

SHiP

 $N_{a}(x)$

 $N_{d}(x)$

ρ(x)

E(x)

V(x)

Х

n-type

eNd

Nd

V_{bi}

 d_n

Asymmetric Junction

Reverse-Biased Junction

Example: $N_d \approx \text{few} \times 10^{12} / \text{cm}^3$ $\rightarrow V_{\text{bi}} = 0.65 \text{ V}, d_n \approx 25 \text{ }\mu\text{m}$

Apply an external voltage to increase the thickness of depletion zone

$$\boldsymbol{d}_{n} = \sqrt{\frac{2\varepsilon \left(\boldsymbol{V}_{b} + \boldsymbol{V}_{bi}\right)}{e} \cdot \frac{1}{N_{d}}}$$

To fully deplete a detector of thickness D

$$V_{\rm fd} = \frac{e}{2\varepsilon} \cdot N_{\rm d} \cdot D^2$$

Example: $D = 300 \,\mu\text{m}$, $N_d \approx \text{few} \times 10^{12} \,/\,\text{cm}^3$

 $V_{\rm fd} \approx 100 \ {\rm V}$

Charge Collection

Drift velocity of charge carriers proportional to electric field *E*(*x*)

 $\boldsymbol{v}(\boldsymbol{x}) = \boldsymbol{\mu} \cdot \boldsymbol{E}(\boldsymbol{x})$

with $\mu \equiv$ charge carrier "mobility"

≈ 1500 cm2 / Vs for electrons ≈ 450 cm2 / Vs for holes

Maximum drift time (for $V_{\rm b} \gg V_{\rm fd}$ **)**

$$\boldsymbol{t}_{\max} = \frac{\boldsymbol{D}^2}{2\,\boldsymbol{\mu}\cdot\boldsymbol{V}_{b}}$$

Example: $D = 300 \ \mu m$, $V_{\rm b} = 200 \ V$

 $t_{\max} \approx \begin{cases} 3.5 \text{ ns for electrons} \\ 11 \text{ ns for holes} \end{cases}$

Signal on readout strips induced by moving charge carriers

- \rightarrow *h* drift towards the implant,
- \rightarrow e drift towards backplane

Signal and Noise

*Signal" from charged particle → Landau distribution *Noise", e.g. from electronics → Gaussian with mean zero → broadens also signal distribution Cut on the measured amplitude to select signal and suppress noise

For high detection efficiency at low rate of "noise hits" need clean separation between the distributions

Figure of merit: $S/N \equiv \frac{\text{most probable signal for mip}}{\text{rms of noise distribution}}$

Rule of thumb: need S / N > 10 for a working detector

Signal and Noise

Signal determined by *dE* / *dx* of particle and thickness of depletion zone

\rightarrow e.g. most probably signal of 22'500 *e/h* pairs for a minimum-ionizing particle in a 300 µm thick detector

Various noise sources: Fluctuations in leakage currents

→ operate at low temperature

Voltage fluctuations in resistors

- $\rightarrow R_s$ as small as possible
- $\rightarrow R_{b}$ as large as possible

Detector capacitance

→ strip / pixel size

University of Zurich[™]

- $C_{\rm d}$: sensor capacitance to ground
- $R_{\rm b}$: bias resistor
- $C_{\rm C}$: AC coupling capacitance
- $R_{\rm s}$: serial resistance on signal path

Silicon Strip Detector

Basic features of a *p*-in-*n* strip sensor metallization of readout strips and backplane reduce electric resistance (R_s) along signal path thin SiO layer between implants and metal strips isolate readout amplifier from leakage currents through detector bulk ("AC coupled readout") **bond pads:** connect metal strip to readout electronics **DC pads:** ohmic contact to p^+ implant, for test purposes **bias resistors:** connect p^+ implants to bias ring, but insulate implants from each other **bias ring:** connect to external bias voltage guard ring(s): shape electric field close to the edge of the sensor, avoid discharges to backplane

University of Zurich^{™™}

Pixel Detectors

Readout implants segmented into pixels (typically $\approx 50 \times 500 \,\mu\text{m}^2$ **)**

Finer segmentation → higher rate capability Smaller cell size → lower noise Measure both coordinates → easier for track reconstruction Need readout amplifier for each pixel, located directly on top of the pixel

Hybrid detector: two wafers mounted back-to-back 1st wafer: pixel sensor, 2nd wafer: readout electronics electrical connection by "bump bonding"

University of Zurich[™]

Monolithic Pixels

Integrate detector and front-end electronics in one wafer

Smaller capacitance → lower noise

→ do not need large signal
→ can make detectors very thin
→ do not need large bias voltage

Example: High-Voltage CMOS

→ process developed for automobile industry → allows to apply voltages up to 100 V **Developed for µ3e experiment at PSI:** → thickness 50 µm, pixels $\approx 80 \times 80 \ \mu m^2$ **Envisaged for LHCb upgrade 1b and 2**

Low-Gain Avalanche Detectors

Thin, highly doped "gain layer" underneath each readout implant

- → high electric field
- \rightarrow charge avalanche

Large signal despite thin sensor

→ fast signal collection → time resolution of 30 ps for large pixels $(1.3 \times 1.3 \text{ mm}^2)$

Time resolution for small pixels ?

- → non-uniform electric field
- → non-uniform drift velocity

Radiation hardness ?

"4D" Tracking

Measure position and time of hit **Can help with pattern recognition:** \rightarrow assigning hits to tracks \rightarrow assigning tracks to vertices E.g. LHCb measures *B* mesons \rightarrow travel ~ 1 cm before they decay LHCb Upgrade 2: around 50 pp interaction vertices for each LHC bunch crossing

→ lower risk of assigning B meson to a wrong pp vertex if precise timing information is available

University of Zurich[™]

43

"4D" Tracking

Measure position and time of hit **Can help with pattern recognition:** \rightarrow assigning hits to tracks \rightarrow assigning tracks to vertices E.g. LHCb measures *B* mesons \rightarrow travel ~ 1 cm before they decay LHCb Upgrade 2: around 50 pp interaction vertices for each LHC bunch crossing

 \rightarrow lower risk of assigning *B* meson to a wrong *pp* vertex if precise timing information is available

Radiation Damage

Most critical: bulk damage from Non-Ionising Energy Loss (NIEL)

Displacement of atoms in the lattice

→ increase of leakage current, noise

Defects act like acceptor atoms

→ "effective dopant concentration" of the silicon bulk changes $N_d \rightarrow N_{eff} = N_d - N_a$

 → "Type inversion": bulk becomes effectively *p*-type as number of defects keeps increasing with received fluence
 Defects can trap drifting charge carriers

University of Zurich^{uzt}

Radiation Damage

Full depletion voltage changes with effective dopant concentration

 $\boldsymbol{V}_{\rm fd} = \frac{\mathbf{e}}{2\varepsilon} \cdot |\boldsymbol{N}_{\rm eff}| \cdot \boldsymbol{D}^2$

→ keeps increasing after type inversion
 → eventually exceeds breakdown voltage
 → cannot fully deplete the detector

After type inversion, depletion zone grows from backplane of the sensor

→ field-free region on the strip side
 if the detector is not fully depleted
 → rapid loss of efficiency, spatial resolution

Radiation Damage

Operate detectors at low temperatures

- → suppresses leakage currents
 - \rightarrow slows down change in $N_{\rm eff}$

Use *n*-type implants in *p*-type bulk:

- → depletion zone grows from readout side before and after irradiation
 - \rightarrow slow, gradual loss of efficiency
 - as V_{fd} exceeds maximal bias voltage
 - But: trapping of e^- at Si/SiO₂ interface:
 - → causes short between readout strips
- → need to add p⁺-type implants to insulate *n*-type implants from each other
 - \rightarrow additional production step, higher cost

"3D Detectors"

Manufacture implants through the bulk

→ decouple drift distance from detector thickness

Higher rate capability

→ faster charge collection

Better radiation hardness:

→ lower bias voltages
 → smaller losses from charge trapping

Production expensive

→ laser drilling or etching

First employed in ATLAS Inner Barrel Layer, installed in 2013/2014

LHCb Detector: 2010-2018

Tracking System: 2010-2018

Particle density falls off rapidly with distance from the beam axis

→ finer granularity in inner
 region of each detector station,
 less fine granularity in outer regions

Downstream of magnet, two technologies in each station:

LHCb Upgrades

1918-2018

Upgrade I (2021 ++)

Upgrade II (2030 ++)

Science and Technology

Upgrade II (2030 ++)

Promising technology for inner part: HV-CMOS pixel detectors

- → pioneered by mu3 experiment
 - \rightarrow sufficiently radiation hard
- \rightarrow thin detectors = little material
 - → low power consumption
- → details of chip design to be adjusted for LHCb needs
 (pixel size, front-end data processing)
 - → minimize dead material from cables, supports etc

Inner Tracker (2010-2018)

Zurich

Material completely dominated by supports, cooling, cables

1**918-201**8

National University of

Science and Technology

SHiP

LHCb Upgrades

1918-2018

56

Upgrade Ib (≈2025)

Size of the silicon tracker for Upgrade 2: keep the occupancy in the scintillating fibre tracker at an acceptable level \rightarrow 3 m² per layer \rightarrow 18 m² for 6 layers Idea: install a smaller version of the silicon tracker in Upgrade Ib \rightarrow gain experience with the new technology → improve track reconstruction

performance for LHC Run 4

Track Reconstruction

Expect biggest challenge to be matching between VELO/UT and MT

 → Upgrade 2: 2500 charged particles inside LHCb acceptance
 → need to extrapolate trajectories over 6 m through magnetic field,
 without any intermediate information

Summary

Efficient and precise tracking of charged particles is a crucial ingredient for almost all particle physics experiments

 \rightarrow to determine production and decay vertices

 \rightarrow to measure momenta

Detection based on interaction of particle with detector material, e.g.

 \rightarrow ionisation of a gas

 $\rightarrow\,$ creation of electron/pair holes in a semiconductor

Apply electric field across detector volume,

read out the signals induced by drifting charges on segmented electrodes

 \rightarrow wires, strips, pixels

Many (sometimes conflicting) performance requirements

→ granularity, spatial resolution, rate capability, radiation hardness, material budget, cost

New detector technologies to face new challenges

University of Zurich¹²¹

Did not talk about many, many very interesting things e.g. use of scintillating fibres for tracking

e.g. Scintillators and scintillating fibres play an important role in calorimetry, I suspect this will be discussed in the lecture by Giovanni de Lellis on 8th of April

NUST MISIS, Russia, Moscow

The slides of this lecture are available at

http://www.physik.uzh.ch/~olafs/pdf/200318_MISIS.pdf

Multi Wire Proportional Chamber

Array of signal wires in between two planar cathodes (Charpak, 1968)

- each wire connected to a readout amplifier and a discriminator
 - register a "hit" if signal on the wire is above discriminator threshold
 - "binary readout" (hit or no hit)
- spatial resolution given by distance *d* between wires

$$\sigma~pprox~m{d}$$
 / $\sqrt{12}$

• typically $d \approx 2 \text{ mm} \Rightarrow \sigma \approx 600 \text{ }\mu\text{m}$

rate capability up to 10⁶/s

