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' Particle Physics Experiments

Accelerate a beam of (stable & charged) particles to high energies

— electrons/positrons, protons/antiprotons, heavy ions
Bring them into collision with

another beam of particles: a target at rest:
“collider experiment” “fixed-target experiment”

e.g. ATLAS, CMS e.g. SHIP

Particle Particle

Measure the properties of the long-lived particles
that are created in the collision

Reconstruct short-lived particles using relativistic kinematics
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LHCb Experiment

A collider experiment that looks like a fixed target experiment

Main goal is to study
b and c hadrons Cherenio dtatiors__ calorimeters
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Detector Components

Position-sensitive detectors

— production vertices and flight path of charged particles
— decay vertices of short-lived particles

Position sensitive detectors in a magnetic field
- momenta of charged particles
Calorimeters
— energy of charged and neutral particles

Cherenkov counters, Transition radiation counters,
Time-of-flight counters, ...

— speed of charged particles
(momentum + speed — mass — particle type)
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Momentum measurement

Moving charge in magnetic field — Lorentz force

F, = q VXxB
— forces particle onto circular trajectory around field lines
2
m ) V — . .
— =q-V B
p=q-B-r

- measure bending radius of particle trajectory
In a known magnetic field

— for a particle withg==x e
p|GeV]| ~ 0.3-B|[T|-r |m]
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Momentum measurement

Typical collider experiment: Typical fixed-target experiment:

solenoid or toroid magnet dipole magnet
— field lines parallel to beam — field lines orthogonal to beam
cylindrical tracking layers planar tracking detectors
Inside the magnet before and after the magnet
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Momentum resolution (I)

“Gluckstern equation” for N equidistant measurements:

o(p) _ [720 5 . P
p N+4 X 0.3 BL?

Relative momentum resolution

[NIM24(1963)381]

— degrades linearly with increasing momentum
— Improves linearly with spatial resolution of the detector
— Improves linearly with the strength of the magnetic field
- Improves quadratically with the
length of the measured track segment

Main reason for the large size of high-energy physics experiments
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Momentum resolution (ll)

Particle trajectory disturbed due to
multiple scattering in the material of the detector

Causes deterioration of e

medium

momentum resolution

o(p) _ 0.2-VL/X,

p  B-B-L

o 001 : | ! |

~ limits momentum resolution J
0.0075
at low momenta (small g)

0.005 —

- material often dominated
by supports, cables, etc
(“dead material”)

0.0025
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ATLAS tracking system

r' R =1082mm

L R = 554mm
( R=514mm

R = 443mm

R=371mm

Pixels
R =50.5mm
R =33.25mm
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Momentum resolution (lil)

LHCDb tracking system
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Momentum resolution (1V)

Y resonances in ATLAS Y resonances in LHCb
s 3
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Hadronic Interactions

Hadrons also undergo nuclear interactions in detector material

— large kink in trajectory or shower of secondary particles
- |oss In reconstruction efficiency

Example CMS:
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Hadronic Interactions

Hadrons also undergo nuclear interactions in detector material

— large kink in trajectory or shower of secondary particles
— |oss Iin reconstruction efficiency

Example CMS:
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Requirements

Spatial hit resolution
— vertex resolution, momentum resolution,
Granularity
— ability to separate two particles that pass the detector close in space
Rate capability
— ability to separate two particles that pass the detector close in time
Material budget
— minimize multiple scattering, hadronic interactions
Radiation hardness
- performance degradation from degradation of detector material
Cost !!!
— often dominated by readout electronics
(number of channels, amount of information per channel)
University of
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Requirements

Close to interaction point: highest particle density ...

— need fine granularity, excellent position resolution,
radiation hardness

. but small tracking volume

— can afford expensive detectors with 72 RN
fine granularity, many readout channels

Further away: large tracking volume ...

— need cost effective detector

. but lower particle density

— can afford coarser granularity, lower position resolution
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Early tracking detectors

E.g. cloud chamber (Wilson, 1912):

Vessel filled with supersaturated water vapour
— charged particle creates ionisation clusters
— lonisation clusters act as condensation nuclel
— trail of water droplets along particle trajectory
Photograph trails through windows in the vessel
— spatial resolution ~ 100 pm
— estimate particle energy from density of droplets
Most important experimental tool until 1950s, but
- low rate capability

— tedious manual analysis of photographs

discovery of positron
(Anderson, 1932)
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Charged particle interacts with detector material
— creates free charge carriers (e.g. by ionization)

FROM MGA TO NUST MISIS
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Apply electric field across detector volume
— collect charges on segmented electrodes
Electronically amplify & shape signal pulse
Digitize the signal

— discriminator: hit / no hit
- ADC.: encode pulse height
— TDC: encode signal arrival time

Transfer digital data to a computer farm
for processing and storage
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Modern tracking detectors
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Cylindrical tube, filled with gas mixture,
thin wire strung along its centre

High voltage (typically 1—- 2 kV)
between wire and outer wall

Charged particle ionizes gas atoms
— electrons drift towards the wire
Very high electric field close to the wire

— electrons gain enough energy
to ionize secondary atoms
- charge avalanche
— measurable voltage pulse on wire
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Gaseous tracking detectors

photograph of a
charge avalanche

wire
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Gaseous tracking detectors

Tracking detector: several layers of such drift tubes

j 5-10 mm
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Gaseous tracking detectors

Tracking detector: several layers of such drift tubes
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- Gaseous tracking detectors

Tracking detector: several layers of such drift tubes
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Gaseous tracking detectors

Measure drift time of electrons - <200 um spatial resolution
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LHCDb Outer Tracker
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Gaseous tracking detectors
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— good spatial resolution =200 um
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— operated reliably

- good hit efficiency > 99 %

— Is being replaced by a
scintillating fibre tracker
In the ongoing LHCb upgrade
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LHCDb Outer Tracker

Drift time of electrons up to = 40 ns,
but bunch crossings at the LHC every 25 ns

- read out overlapping events
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LHCDb Outer Tracker

Drift time of electrons up to = 40 ns,
but bunch crossings at the LHC every 25 ns

- read out overlapping events
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LHCDb Outer Tracker

Occupancy in the inner part of the detector
— up to one in 4 straws is hit on average
— at the limit for efficient track reconstruction
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LHCDb Outer Tracker

Primary ionization is a statistical process,

discrete ionization clusters generated  [cas o9 o e

[g/cm?] [ecm™] [cm]

along the particle trajectory Mo gogx10” 154 37 [52] 92

He 178 x 104 24.6 41 59 1.8

Number of clusters for a given pathlength [~ 1z3x100 155 35 f10] 56

follows a Poisson distribution O 143xi0® 122 3 2|73
k

Ne 9.00x 104 216 36 12 39

_w — Ar 178x 103 158 26 |29 94

P<k | M) kil e’ K 374x10° 140 24 22| 192

o Xe 589x 103 121 22 |44 307

— probabillity to create at least one cluster O, 1esx10% 137 33 laal| o
e =1 — P(O | u) —1—e* CH, 717x104 131 28 |16] 53

CqHio 267x103 108 23 |46 195

— for detection efficiency ¢ > 99% need u =5

For Argon (at 1 bar): u = 29 primary clusters / cm
- need = 1.7 mm path length to reach € = 99%
- need drift cell with = 5 mm diameter
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_ NUST MISIS, Russia, Moscow
Wire Ageing

Creation of chemical radicals in the
charge avalanche close to the wire

— polymerization of carbohydrates
Formation of deposits on wires
— loss of gas gain
Formation of whiskers
— discharges, noise, HV breakdown

Very small contamination of the drift gas
can have disastrous consequences

— typical problem: outgassing of glues
Extensive studies, lists of “allowed” materials

— put one mistake can destroy the detector

1918-2018 National University of
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Micro-Pattern Gaseous Detectors

Gas Electron Multiplier (“GEM”):

Thin Kapton foil
( electrically insulating polyimide film)
with copper coating on both sides

Regular array of fine holes
(75 um @, 140 um distance)
etched through the foil

Voltage applied between the two sides

- high electric field inside the holes

— gas amplification

University of
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Readout granularity independent of
the thickness of the gas layer

No wires — no wire ageing

Usually stack several GEM foils to
obtain high gas gain with low voltage

Triple-GEM detectors e.g. employed
In inner part of LHCb muon system

415 V per GEM foil - total gain ~ 4’300

Disadvantage: inclined tracks can
give sighals on many readout strips

FROM MGA TO NUST MISIS
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Silicon tracking detectors

Segmented reverse biased p—n junction (diode)

Pre-amplifiers/

Simplest device: n-doped Particle Ehapers
monocrystalline silicon wafer, fplan, Meualisation S
4+ D IJ—/\;

p-doped implants at surface

- strips with pitch 250 — 20 um Suippieh P
. Implant width, ;
— resolution 50 to a few pm
— or pixels for even finer granularity

Apply reverse bias voltage Backplane, i -typesilcon by
- electric field through the wafer

| (typ. 300um)

electrons v * Bulk

lonizing particle creates electron-hole pairs in the silicon lattice

— electrons and holes drift to surface
— Induce signals on the p-doped implants
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p-n Junction

n-side: doping with Group-V elements
— |loosely bound electrons (e) in silicon lattice

p-type n-type

(b) n.p

p-side: doping with Group-Illl elements —j T N

— loosely bound “holes” (h) in silicon lattice CNX

e/h density gradient across the junction } . 0
— diffusion across the junction Lo | :

Depletion zone without free
charge-carriers

— p-side: e absorbed by acceptor atoms
— n-side: h absorbed by donor atoms

Movement of electric charge
— electric field across the junction

University of
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p-n Junction

Equilibrium between diffusion w it
and Coulomb force —
Electric field and potential barrier o I N xgg
from Coulomb equation — o °'
_d’v _dE _ p(x) ’ P(x)
dXZ - dx - € | eNa | T
- intrinsic potential barrier and . | E(x)
thickness of depletion zone: . v
Vi = 5 (Ny % + N, d?) Vi)

d, 0 d,
depletion zone
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Asymmetric Junction

(a) x=0

In a silicon detector, junction is between

- bulk: few 100 um thick i o
- Implants: few um thin . :
P " T e
Want depletion zone to extend into bulk | . N
d, (bulk) > d, (implant) ol
. . _ @ p(x)
To achieve this, use charge conservation Uee | " > x
Ny,d,=N,d,
and make | Ex)
N_ (implant) > N (bulk)
V(x)
Ford > dp:
2¢ V.. 1 d 0 d
V.. = € . N bi | p n
bl 2¢ d e N, depletion zone
1068 ) University of
19182018 MISIdShD Zurich™ d 34




Example: N, = few x 10**/cm?®
~ V. =0.65V,d =25um

Apply an external voltage to increase
the thickness of depletion zone

J _\/Zs(Vb+Vbi). 1
no e N,

To fully deplete a detector
of thickness D

V= 28 N, . D?
Example: D=300 um, N = fewx 10**/cm?
Vfd =100V
—— MISIS:) University of
m National Uriversiy Tf SH P Z Uric h vzH

V, <Vqy
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Reverse-Blased Junction

| p* - E(x) _
1-© 4e /
1, Y,
| p’ - E(x) _
+ f E
' e d =D
| | v X n"—

35
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Charge Collection

Drift velocity of charge carriers proportional to electric field E(x)

V(X):M’E(X) 80
with u = charge carrier “mobility” "

p-strips in n-bulk |

h, central strip
e, central strip
h, neighbouring strip
e, neighbouring strip _|

=~ 1500 cm2 / Vs for electrons
=~ 450 cm2 / Vs for holes

Maximum drift time (for vV, > V.,,)

|
w
DZ 20 \"/ i :
t — 01 2 3 4 5 6 7 B 9 101112 13 14 15
max 2pn-V, time [ns]
Example: D = 300 pm, V, =200 V Signal on readout strips
induced by moving charge carriers
_ 3.5 ns for electrons — h drift towards the implant,
tmax ~ 11 ns for holes — e drift towards backplane
100t MISIS/D University of
19182018 | towdiesnsr | SHGP @@y Lurich -
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Signal and Noise

“Signal” from charged particle

. . Noise Signal from
— Landau distribution N . Charged particle

.‘
5
ann®

Signal convolved

(1 . 77 -
Noise”, e.g. from electronics e

— Gaussian with mean zero Ak
~ broadens also signal distribution | J’ :

Cut on the measured amplitude .~ L° sy st
- . Amplitude
to select signal and suppress noise

For high detection efficiency at low rate of “noise hits”
need clean separation between the distributions

Figure of merit: S/N = most probable signal for mip
' ~ rms of noise distribution

Rule of thumb: need S/ N > 10 for a working detector

MISIS/D
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and Technology
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Signal and Noise

Signal determined by dE | dx of particle
and thickness of depletion zone

— e.g. most probably signal of 22’500 e/h pairs
for a minimume-ionizing particle in a 300 pm thick detector

Various noise sources: SeTECTOR BiAS
- - C
Fluctuations in leakage currents H e eLEEs PULe SasEn

- operate at low temperature e A
"y -
Voltage fluctuations in resistors  ccecwor g “ & [|> ‘:: U

-~ R_as small as possible

i C,: sensor capacitance to ground
-~ R _as large as possible a SENSOTEAP J
R,: bias resistor
Detector capacitance C.: AC coupling capacitance
N Strip / pixe| sSjze R.: serial resistance on signal path
Musus@ 11 ) University of
187018 | twrsvmernr | SHiP gy Zurich 38
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Silicon Strip Detector

Basic features of a p-in-n strip sensor T
nLR

metallization of readout strips and backplane Sio

reduce electric resistance (R,) along signal path

V,
thin SiO layer between implants and metal strips ° Al
+
Isolate readout amplifier from leakage currents _
through detector bulk (“AC coupled readout”) nbulk AlSUP o implant

bond pads: connect metal strip to readout electronics
DC pads: ohmic contact to p* implant, for test purposes

bias resistors: connect p* implants to bias ring,
but insulate implants from each other

bias ring: connect to external bias voltage

guard ring(s): shape electric field close to the edge
of the sensor, avoid discharges to backplane

University of
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Pixel Detectors

Readout implants segmented into pixels (typically = 50 x 500 pm?)

Finer segmentation
- higher rate capabillity

Smaller cell size
— |lower noise
Measure both coordinates
— easiler for track reconstruction Ll 2,
Need readout amplifier for each pixel, -
located directly on top of the pixel h

Hybrid detector: two wafers mounted back-to-back
1°t wafer: pixel sensor, 2" wafer: readout electronics
electrical connection by “bump bonding”

& K

SH]P
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' Monolithic Pixels

Integrate detector and front-end electronics in one wafer

Smaller capacitance — lower noise
— do not need large signal
- can make detectors very thin
— do not need large bias voltage

Example: High-Voltage CMOS
— process developed for automobile industry
— allows to apply voltages up to 100 V
Developed for p3e experiment at PSI:
— thickness 50 um, pixels =80 x 80 um?
Envisaged for LHCb upgrade 1b and 2

University of
Zurich™




Thin, highly doped “gain layer”
underneath each readout implant

- high electric field
- charge avalanche

Large signhal despite thin sensor

— fast signal collection
— time resolution of 30 ps
for large pixels (1.3 x 1.3 mm?)

Time resolution for small pixels ?
— non-uniform electric field
— non-uniform drift velocity

Radiation hardness ?

| misis D a1 lZJ“')’Tq'[,thWf
ﬁgﬂ_g;%g‘%ms NationaIUr(ljn%_ersr:t |fgy SH]P W urlc

Time Resolution [ps]

NUST MISIS, Russia, Moscow

Low-Gain Avalanche Detectors

Anode
Ring

Time Resolution HPK 3.1 50pm -30C

HGTD Preliminary

300 400 500 600 700
Bias Voltage [V]

--+--Non irrad
-&-5E14P
-e-1E15P
-=-5E15P
—o—1E14N
——4E14N
——8E14N
-e-1.5E15N
-8-3E15N

® —a—6E15N

[Giovanni Pellegrini @ 23" RD50]
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“4D” Tracking

Measure position and time of hit
Can help with pattern recognition: P — %A—P

oy ..... B
— assigning hits to tracks J1P X
— assigning tracks to vertices P> <P

E.g. LHCb measures B mesons

— travel ~ 1 cm before they decay

Event with ~50 PV

LHCb Upgrade 2: around Fwof Aicorect | o
50 pp interaction vertices for ) :
each LHC bunch crossing N/ :
— lower risk of assigning B meson ATy = | 8
to a wrong pp vertex if precise T e e
timing information is available T
100: MISIS/D University of
1918:2018 | tetonalunvesivol | SHAP s Lurich
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“4D” Tracking

Measure position and time of hit
Can help with pattern recognition: P — %A—P

— assigning hits to tracks et X
— assigning tracks to vertices P> <P

E.g. LHCb measures B mesons

— travel ~ 1 cm before they decay

U P N I VO R
LHCb Upgrade 2: around T ob e RS L e
. . . < -, m ~ RMS, = 63mm |
50 pp interaction vertices for § o+ oowm ¢* ,,,,,,,,,,,
each LHC bunch crossing R s S
— |lower risk of assigning B meson g
to a wrong pp vertex if precise R
_ : : : : 0720 30 40 50 60 70 80 90 100
t|m|ng |nf0rmat|0n |S ava”able Outer detector time precision [ps]
/- D i . .
1008 | misisD 11 ) University of
19182018 | ot | SHGP gy Zurich 44
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Radiation Damage

Most critical: bulk damage from Non-lonising Energy Loss (NIEL)

Displacement of atoms in the lattice
— Increase of leakage current, noise

Defects act like acceptor atoms

“effective dopant concentration”
of the silicon bulk changes
Ny = Ny =N;—=N,

- “Type inversion”: bulk becomes
effectively p-type as number of defects
keeps increasing with received fluence

Defects can trap drifting charge carriers

100: MISIS/D s ;’"')’iﬂfjtYOf
lglag":%g%ms N aaaaaa lUTj“‘ll?rSrl]t Ifgy w,,,s,‘,,H,JPK,,,, w urlc

Vacancy/Oxygen
Center

Disor'd_er'ed Interstitial
region

. Carbon
Carbon-Carbon Interstitial
Pair .

Di-vacancy

Phosphorous Carbon-Oxygen
dopant . pair

[
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Radiation Damage

Full depletion voltage changes e |

. . . & DOFZ<111> (72 h 1150°C) P

with effective dopant concentration ol 3 NMezawn o
_ e 2 £ e
Vfd_2_8'|Neff|°D = 13
> 4 z

— keeps increasing after type inversion P

— eventually exceeds breakdown voltage e S S T TR

]

— cannot fully deplete the detector

After type inversion, depletion zone
grows from backplane of the sensor

— field-free region on the strip side
If the detector is not fully depleted
— rapid loss of efficiency, spatial resolution

MISIS/@

National University of
Science and Technology

YEARS |2

ild <) University of
s Lurich
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Radiation Damage

Operate detectors at low temperatures
— suppresses leakage currents
- slows down change in N_

Use n-type implants in p-type bulk: V, < Vi,
— depletion zone grows from readout side _
before and after irradiation
- slow, gradual loss of efficiency
as V_ exceeds maximal bias voltage

But: trapping of e~ at SI/SIO, interface: A|uminiumSI02
— causes short between readout strips ,mg|;m %”f“ = nm]uumm
— need to add p*-type implants to insulate 2 Lk
n-type implants from each other p bulk

— additional production step, higher cost

) universityof
_SHiP s Lurich n

ooooooooooooooo

MISIS/)

1918-2018 National University of
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“3D Detectors”

Manufacture implants through the bulk

— decouple drift distance
from detector thickness

Higher rate capability

— faster charge collection

. . electrodes
Better radiation hardness:

- lower bias voltages

n-active edge

. d dard
~ smaller losses from charge trapping @, @ %,f-t-a"o?{-\-- strips
° ° ! oi 0.
Production expensive Lo 2 '.T
* e (=1 e
" : thie Nioeluln
- laser drilling or etching i -
First employed in ATLAS Inner N g
g ] N Y DL J -g:_,_ back-
Barrel Layer installed in 2013/2014 pitch=50-200 ym  * plane
100} MISIS:D A1) University of
BI820% | pesumes | SHGP_ gy Zurich 48
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LHCDb Detector: 2010-2018

Ve_r-tex quator RICH detectors Muon system
(silicon strips)

Ll
B - R

[I'racl_ger Turu_:ensm} [In_n_er | Outer Tracker} [Cal orimetersj

Py zj A II‘ 1 p

[JINST 3(2008)S08005]

(silicon strips) (silicon strips / straws)
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http://cdsweb.cern.ch/ejournals.py?publication=J.+Instrum.&volume=3&year=2008&page=S08005

NUST MISIS, Russia, Moscow

Tracking System: 2010-2018

Particle density falls off rapidly
with distance from the beam axis

— finer granularity in inner
region of each detector station,
less fine granularity in outer regions

Downstream of magnet, two
technologies in each station:

OT: Straws IT: Silicon strips

N

/7 IT/IOT
VELO m

100 D | 63 AP Univerci
misisD | OF £8) University of

= W > Z [ 2 o UZH
1918-2018 ez s Zurlch
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LHCb Upgrades

Run 1 Run 2 Run 3 Run4 Runb

L 203 T
E 3 300 =
g 18— :é;
o . (o]
= 16— 250 £
2 €
§ 14 — -
L - 200
E 12— .“g "
3 = Z @
x 10— & @
[ - 150 € <
= 7 - ©
8 — §
6— 100 ?'
- <
4— S,
. 50
2—]
0— ! 0
2010 2015 2020 2025 2030 2035
T T e
Upgrade | |!
;R:mfnonusrms“z ‘d“ }i{ : }?{ . .
003 MISIS/ED 41 ) University of
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Upgrade | (2021 ++)

Vertex locator New optics,

(silicon pixels) | photon detectors {New electronlcs}

T 111 R

[Upstream Tracker} [ Scintillating } {New electronics}

(silicon strips) Fibre Tracker

SH]P
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National University of
and Technology
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Upgrade Il (2030 ++)

Silicon pixels with
timing resolution
(e.g. LGAD)

Muon detector with
finer segmentation

New “TORCH”
Detector

S
Gl
Silicon with finer [Silicon in inner region ECAL with finer
segmentation ) segmentation,
(timing resolution ?) (98- RVHEARS) timing resolution

FROM MGA TO NUST
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1918-2018 National University of
'OPENING A NEW CENTURY d T h I gy
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Upgrade Il (2030 ++)

Promising technology for inner part:
HV-CMOS pixel detectors

— pioneered by mu3 experiment
— sufficiently radiation hard

— thin detectors = little material
- low power consumption

data and services:
power,cooling

— detalils of chip design to be adjusted
for LHCb needs
( pixel size, front-end data processing)

100 cm

— minimize dead material from I

cables, supports etc \
430 cm

University of

SH;P %:%:5*” Zu riChUZH n
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Inner Tracker (2010-2018)

top box

(one-sensor modules)

Material completely dominated
by supports, cooling, cables

" LHC
beam pipe

\ A-side box
.. (two-sensor modules)

C-side box” = 8
support frame (two-sensor modules) iy

(bottom and A-side box)

.

support frame

(top and C-side box) bottom box

8 i . (one-sensor modules)
cooling pipes
% (CeF14) — 55 0.20
= detector b 5.0 10
(@1 etector boxes 016
(<) 45 0.14
8 signal- and 0.12
supply-cables 4.0
(4] 0.10
3.5
service boxes —10.08
v 4 3.0 0.06
T lg i d _— flexible 25 B 0.04
a cable chain ) 0.02

0.00

FROM MGA TO NUST MISIS ‘“ ° °

A 2 @ ®
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LHCb Upgrades

Run 1 Run 2 Run 3 Run4 Runb
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Upgrade Ib (=2025)

Size of the silicon tracker 3 "E Upgrade 2 — seiF -
for Upgrade 2: 2 onf luminosity T SaFiwIMT 3

keep the occupancy in the = omf :
scintillating fibre tracker = b E
at an acceptable level S e et e e e B
- 3m? per layer x [mm]

- 18 m? for 6 layers
Idea: install a smaller version of
the silicon tracker in Upgrade Ib
— gain experience with the
new technology
— Improve track reconstruction
performance for LHC Run 4

MISIS/D

NationaIU nnnnnn ity of
and Technology

YEARS |2

University of
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Track Reconstruction

Expect biggest challenge to be MT
matching between VELO/UT and MT f

uTt
~ Upgrade 2: 2500 charged particles V'Ew%/—
Inside LHCb acceptance 4Tm
v

— need to extrapolate trajectories \)
over 6 m through magnetic field,

without any intermediate information 25m 8.5m

Bending plane of the magnet

AB=Apx
True trajectory
reconstructed

Hit

i Windows Projections

.......... \ AN L

SHY pa3dafes-aid ||y

-"-: Hough Cluster ESeam=TI e \\
VELO track T-track
Track \
‘ T I
Seed traCk T1 T2 T3 #I-rits |||||”| ”l “ Zbending B
Reference (hough) plane VeloPixel uT Sci-Fi
e i1 2\ University of
wIJE MlSleD frd 7 . huzn y ‘
})ga_g;%g%ms 2 aaaaaa I Ulzjl\fl_ersrl]t o M,,,M,,HM!P,&, 'V"VY" urlc




Summary

Efficient and precise tracking of charged particles is
a crucial ingredient for almost all particle physics experiments

— to determine production and decay vertices
- {0 measure momenta

Detection based on interaction of particle with detector material, e.g.

— |onisation of a gas
— creation of electron/pair holes in a semiconductor

Apply electric field across detector volume,
read out the signals induced by drifting charges on segmented electrodes

— wires, strips, pixels

Many (sometimes conflicting) performance requirements
— granularity, spatial resolution, rate capability,
radiation hardness, material budget, cost

New detector technologies to face new challenges

University of

SH]P @ ZU riChUZH

MISIS:D
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dT chnology
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Summary

Did not talk about many, many very interesting things

e.g. use of scintillating fibres for tracking

[ e.g. Scintillators and scintillating fibres |
J play an important role in calorimetry, .
| suspect this will be discussed in the lecture
L by Giovanni de Lellis on 8" of April )

University of

SHIP, s Lurich
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The slides of this lecture are available at

http://lwww.physik.uzh.ch/~olafs/pdf/200318_MISIS.pdf

University of
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Multi Wire Proportional Chamber

Array of signal wires in between two planar cathodes (Charpak, 1968)

 each wire connected to a readout -
virtual” detector cell

amplifier and a discriminator 0.4 A~ m—— Y
ol T
* register a “hit” if signal on the wire o2t i i |
Is above discriminator threshold ol | i |
E | | | |
S g e 8 +HY
“binary readout” (hit or no hit) o il | “\\\ﬂ i
ozl I
e spatial resolution given by o[l ; ; |
distance d between wires 04K | T . | L | - L — HV
| | N vem Nfeldines
~ d/v12
e typicallyd=2mm = o =600 pum * rate capability up to 10°/s
MISIS:D i Uniyer;ityof
DIZ0I8 | wwsveve | SHiP gy Zurich 62
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