Measurement of CP-averaged observables in the $B^0{\rightarrow} K^{*0}\mu^+\mu^-$ decay

http://arxiv.org/abs/2003.04831

15th April 2020

Mitesh Patel (Imperial College London)

Introduction

- Will talk through my very recent experimental paper, <u>http://arxiv.org/abs/2003.04831</u>
- Idea to explain the main elements of a particle physics analysis in this case study of the 'rare decay' $B^0 \rightarrow K^{*0}\mu^+\mu^-$
- Decay of interest because have previously seen some significant tensions with current thinking

Outline

- The aim of the measurements
- How initial raw data become final experimental plot
- Comparison with theoretical predictions, forward look

Outline

- The aim of the measurements
- How initial raw data become final experimental plot
- Comparison with theoretical predictions, forward look

Physics beyond the SM

- The so-called Standard Model (SM) of particle physics has explained essential all experimental observations for decades
- BUT: whole host of open questions:
 - What is origin of dark matter?
 - One or more weakly interacting massive particles (WIMPs)?
 - Why are there so many types of matter particles?
 - Mixing of different flavours of quarks and leptons
 - Observed matter-antimatter difference
 - Are fundamental forces unified?
 - Do all the forces unify at some higher energy scale?
 - What is quantum theory of gravity?
 - String theory?

- ...

• Expect new particles, "new physics" – how to search for this?

Why do we study rare decays?

- Main thing of interest for probing NP: loops/trees
 - NP thought to be less likely to affect decays at tree level
 - Loop decays involve second order (→ suppressed, potentially "rare") diagrams in which new, virtual particles can contribute
- Most interesting processes those where there is no tree contribution
 - e.g. Flavour Changing Neutral Currents forbidden at tree level in SM
 - \rightarrow FCNC processes necessarily involve loops
 - Loops can involve (virtual) NP particles!
 - \rightarrow Can probe masses > CM energy of accelerator
 - → Model independent probes! Whatever is in the loop we measure it!
- In order to gain information need to compare experimental measurements to precise theory predictions

Tree-level decay

 $B^0 \rightarrow K^{*0} \mu \mu$

- Flavour changing neutral current → loop process (→ sensitive to NP)
- Decay described by three angles

 (θ_I, φ, θ_K) and di-μ invariant mass q²
- Try to use observables where theoretical uncertainties cancel
 e.g. Forward-backward asymmetry
 - A_{FB} of θ_{I} distribution
 - Zero-crossing point: ±6% uncertainty on theory prediction

Origin of theoretical uncert.

- Major theoretical uncertainties come from so called "form-factors"
 - May have met these considering scattering from an object extended in space
 - Rather than point-like charge, have some density $\rho(\vec{r})$ such that $\int d^3 r \rho(\vec{r}) = 1$
 - Fourier transform is called the form factor

$$F(ec{q}) = \int \mathrm{d}^3 r \, \exp[-iec{q}ec{r}]
ho(ec{r}) \Longrightarrow F(0) = 1$$

- Modification of cross sections for scattering on such an object

$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}^2\Omega} \right|_{\mathrm{extended}} \approx \left. \frac{\mathrm{d}\sigma}{\mathrm{d}^2\Omega} \right|_{\mathrm{ptlike}} |F(q)|^2$$

 In our case, don't have a short distance b→sµµ quark level transition, have :

The Operator Product Expansion

- Don't want interpretation of measurements to depend on theory model to which compare – Make an *effective theory* which gives us *model independent things to measure*
- Most familiar example of this Fermi's theory of beta decays
 - Z and W are very massive the weak interactions take place at very short distance scales $O(1/M_W^2)$
 - Construct effective theory where integrated out \rightarrow four-particle coupling

- For $q^2 \ll m_W^2$ can replace W propagator
- Effectively absorbs the contribution from the W into the factor G_F, in the limit when W is too heavy to be resolved

The Operator Product Expansion

• Rewrite (part of) SM Lagrangian as:

$$\mathcal{L} = \mathop{\text{a}}_{i} C_{i} O_{i}$$

- "Wilson Coefficients" C_i
 - Describe the short distance part, can compute perturbatively in a given theory
 - Integrate out the heavy degrees of freedom that can't resolve at some energy scale $\mu \rightarrow$ Wilson coefficient just a (complex) number
 - All degrees of freedom with mass>µ are taken into account by the Wilson Coefficients, while those with mass<µ go into the operators ...
- "Operators" O_i
 - Describe the long distance, non-perturbative part involving particles below the scale $\boldsymbol{\mu}$
 - Form a complete basis can put in all operators from NP/SM
 - Account for effects of strong interactions and are *difficult to calculate reliably*

$B^0 \rightarrow K^{*0} \mu \mu$ form factors

- Amplitudes that describe the $B^0 {\rightarrow} K^{*0} \mu \mu$ decay involve
 - The (effective) Wilson Coefficients :

C₇^{eff} (photon), **C**₉^{eff} (vector), **C**₁₀^{eff} (axial-vector)

– Seven (!) form factors

$$\begin{aligned} A_{\perp}^{L(R)} &= N\sqrt{2\lambda} \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} + \mathbf{C}_{9}^{\prime\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} + \mathbf{C}_{10}^{\prime\text{eff}}) \right] \frac{\mathbf{V}(\mathbf{q}^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C}_{7}^{\text{eff}} + \mathbf{C}_{7}^{\prime\text{eff}}) \mathbf{T}_{1}(\mathbf{q}^{2}) \right\} \\ A_{\parallel}^{L(R)} &= -N\sqrt{2} (m_{B}^{2} - m_{K^{*}}^{2}) \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} - \mathbf{C}_{9}^{\prime\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}^{\prime\text{eff}}) \right] \frac{\mathbf{A}_{1}(\mathbf{q}^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C}_{7}^{\text{eff}} - \mathbf{C}_{7}^{\prime\text{eff}}) \mathbf{T}_{2}(\mathbf{q}^{2}) \right\} \\ A_{0}^{L(R)} &= -\frac{N}{2m_{K^{*}}\sqrt{q^{2}}} \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} - \mathbf{C}_{9}^{\prime\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}^{\prime\text{eff}}) \right] \left[(m_{B}^{2} - m_{K^{*}}^{2} - q^{2})(m_{B} + m_{K^{*}}) \mathbf{A}_{1}(\mathbf{q}^{2}) - \lambda \frac{\mathbf{A}_{2}(\mathbf{q}^{2})}{m_{B} + m_{K^{*}}} \right] \\ &+ 2m_{b} (\mathbf{C}_{7}^{\text{eff}} - \mathbf{C}_{7}^{\prime\text{eff}}) \left[(m_{B}^{2} + 3m_{K^{*}} - q^{2}) \mathbf{T}_{2}(\mathbf{q}^{2}) - \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2}} \mathbf{T}_{3}(\mathbf{q}^{2}) \right] \bigg\} \end{aligned}$$

- BFs have relatively large theoretical uncertainties from form factors
- Angular observables much smaller theory uncertainties

Outline

- The aim of the measurements
- How initial raw data become final experimental plot
- Comparison with theoretical predictions, forward look

$B^0 \rightarrow K^{*0} \mu \mu$ angular distribution

 Can write down angular distribution for B⁰ decays, assuming B⁰ behaves the same ("CP-averaged")

 $\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \Gamma)}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \bigg|_{\mathrm{P}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + S_4 \sin^2 \theta_l \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \Big],$ (1)

- Quantities F_L , A_{FB} , S_i dependent on q^2 and determine WCs
- Observe K^{*0} through its (strong) decay to K⁺π⁻ final state but this can occur in two different angular momentum configurations

$B^0 \rightarrow K^{*0} \mu \mu$ angular distribution

• Modified angular distribution

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \Big|_{\mathrm{S+P}} = (1-F_{\mathrm{S}}) \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \Big|_{\mathrm{P}} + \frac{3}{16\pi} F_{\mathrm{S}} \sin^2 \theta_l + \frac{9}{32\pi} (S_{11} + S_{13} \cos 2\theta_l) \cos \theta_K$$
(2)
$$+ \frac{9}{32\pi} (S_{14} \sin 2\theta_l + S_{15} \sin \theta_l) \sin \theta_K \cos \phi + \frac{9}{32\pi} (S_{16} \sin \theta_l + S_{17} \sin 2\theta_l) \sin \theta_K \sin \phi,$$

- Need to isolate B⁰→K^{*0}µµ decays, measure the angles and q², and fit for these observable quantities that can be predicted in terms of the WCs by theorists... Simple!
- Note can parameterise in alternative basis, P_i observables

The Large Hadron Collider

• World's highest energy particle accelerator

… Also copious source of B mesons

• The LHCb experiment looks very different to the central detectors:

- B lifetime \rightarrow displaced secondary vertex
 - Vertex detector capable of picking out the displaced vertex
 - Need ~1 interaction/event → operate at luminosity 10 times lower that central detectors

- B lifetime \rightarrow displaced secondary vertex
 - Vertex detector capable of picking out the displaced vertex
 - Need ~1 interaction/event → operate at luminosity 10 times lower that central detectors

• Precision momentum resolution \rightarrow mass resolution

 Many of final states of interest contain kaons, in general decays dominated by pions

 \rightarrow particle identification critical

The "Trigger"

- Small event size (60kB)
 → large bandwidth
- Allows low thresholds

L0 Hardware	"high p_T " signals in calorimeter and muon systems
HLT1 Software	Partial reconstruction, selection based on one or two (dimuon) displaced tracks, muon ID
HLT2 Software	Global reconstruction (very close to offline) dominantly inclusive signatures – use MVA

+ Global Event Cuts for events with high multiplicity

	Charm	Had. B	Lept. B
Overall efficiency	~10%	~40%	~75-90% 2

Fitting the angular distribution

- $m(K^+\pi^-\mu^+\mu^-)$ is used to discriminate signal from background fit this mass simultaneously with the three angles in bins of q^2
- $m(K^{+}\pi^{-})$ is used to constrain the angular-momentum configuration

Cross-check procedure using B⁰→J/ψ(→μ+μ−)K^{*0} decay, same final state but 100× more prevalent

Backgrounds

- Two classes considered :
 - Combinatorial : selected particles do not originate from a single bhadron decay; can then have any mass – use MVA to reject
 - `Peaking' : single decay selected but with some (MeV/c²) 0.22 0.18 of the final-state 0 0.16E particles misidentified, 0.14E accumulates 0.1 somewhere in 0.08 0.06 $m(K^{+}\pi^{-}\mu^{+}\mu^{-}) - use$ 0.04 0.02 specific vetoes to reject 5400 5200

Selection cuts

- The four tracks of the final-state particles are required to have significant impact parameter (IP) with respect to all primary vertices (PVs) in the event
- The IP of the B⁰ candidate is required to be small with respect to one of the PVs
- The vertex of the B⁰ candidate is required to be significantly displaced from the same PV
- The angle between the reconstructed B⁰ momentum and the vector connecting this PV to the reconstructed B⁰ decay vertex, θ_{DIRA}, is also required to be small
- The tracks are fitted to a common vertex, which is required to be of good quality
- To avoid the same track being used to construct more than one of the final state particles, the opening angle between every pair of tracks is required to be larger than 1 mrad

q² vetoes

Multivariate analysis

Combinatorial background is reduced further using a boosted decision tree (BDT) algorithm

 Rejects more than 97% of the remaining combinatorial background, while retaining more than 85% of the signal

Correcting for the efficiency

- The angular distribution is multiplied by an acceptance model used to account for the effect of the reconstruction and candidate selection
- Compute 4D efficiency function, ε, using simulated events
 ε(cos θ_I, cos θ_K, φ, q²)
- Function of all underlying variables → can determine with a phase-space simulation

Correcting for the efficiency

- Parameterised:
 - − P_i(x) are Legendre polynomials of order i (x rescaled -1→1)
 - For cos θ_l, cos θ_K, φ, q² use up-to and including 4th,5th,6th, 5th order polynomials

$$\varepsilon(\cos\theta_l,\cos\theta_K,\phi,q^2) = \sum_{ijmn} c_{ijmn} L_i(\cos\theta_l) L_j(\cos\theta_K) L_m(\phi) L_n(q^2), \qquad (3)$$

Coeff c_{klmn} determined using principal moments tech. (...)

Modelling the distributions

- Signal angular distribution already discussed
- Background angular distribution is modelled with second-order polynomials in $\cos \theta_{I}$, $\cos \theta_{K}$ and ϕ , angular coefficients are allowed to vary in the fit
- m(K⁺π⁻μ⁺μ⁻) shape of the signal modelled with sum of two Gaussian functions with a common mean, each with a power-law tail on the low mass side parameters determined from B⁰→J/ψK^{*0} decay
- $m(K^+\pi^-\mu^+\mu^-)$ shape of the background modelled with an exponential
- m(K⁺π⁻) shape of signal from first principles (relativistic Breit Wigner) and other data (LASS experiment); background taken to be linear

Validating the fit procedure

B⁰→J/ψ(→µ+µ−)K^{*0} fit reproduces the angular observables measured elsewhere

Fit bias, coverage

- Given large number of parameters, fit may not return the observable quantities in an unbiased way and/or may not have e.g. 68% of the population within +-1σ of the estimated uncertainties (do fit errors provide the correct "coverage")
- This is tested with simulated experiments. Referred to as 'pseudoexperiments' in the paper or 'toys' colloquially
- Biases observed are small: <10% of statistical uncertainty
- Statistical uncertainty is corrected to account for under- or overcoverage and a systematic uncertainty equal to the size of the observed bias is assigned

Systematic uncertainties

- Statistically dominated results systematic uncertainties are small
- Again assessed with pseudoexperiments
- Vary one or more assumptions, determine angular observables with and without this variation, take average of the difference between the two as the uncertainty

Source	$F_{ m L}$	$A_{\mathrm{FB}},~S_3$ – S_9	$P_1 - P_8'$	
Acceptance stat. uncertainty	< 0.01	< 0.01	< 0.01	
Acceptance polynomial order	< 0.01	< 0.01	< 0.02	
Data-simulation differences	< 0.01	< 0.01	< 0.01	
Acceptance variation with q^2	< 0.03	< 0.01	< 0.09	
$m(K^+\pi^-)$ model	< 0.01	< 0.01	< 0.01	
Background model	< 0.01	< 0.01	< 0.02	
Peaking backgrounds	< 0.01	< 0.02	< 0.03	
$m(K^+\pi^-\mu^+\mu^-)$ model	< 0.01	< 0.01	< 0.01	
$K^+\mu^+\mu^-$ veto	< 0.01	< 0.01	< 0.01	
Trigger	< 0.01	< 0.01	< 0.01	
Bias correction	< 0.02	< 0.01	< 0.03	

Fit Projections

Outline

- The aim of the measurements
- How initial raw data become final experimental plot
- Comparison with theoretical predictions, forward look

Interpretation

- The local discrepancy in the P₅' observable in the 4.0<q²<6.0 and 6.0<q²<8.0 GeV²/c⁴ bins reduces from the 2.8 and 3.0σ observed previously to 2.5 and 2.9σ
- Overall tension with SM observed to increase to 3.3σ

Wider Interpretation

• [Theorists] fit together with other measurements of $b \rightarrow s$ processes

Conclusions

- Very exciting picture emerging from measurements of b→s processes!
 - First cracks in ~60 year old Standard Model?
 - Or a problem with the theoretical predictions?
- Still have twice this data set already recorded to try and improve these measurements further
- Beyond this will run an upgraded LHCb experiment to collect a ~10 times larger dataset over next ~5 years