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Summary

- We have seen that Neural Networks consist generally in several layers of
neurones with non-linear activation function

- Output function depends on the goal, we have seen, linear, sigmoid, soft-max,
but there could be more
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D Summary

ANN are optimised using some variant of Gradient Descent:

Several algorithms improve vanilla SGD such as Momentum, RMSProp,
Adam, ... all these are available in modern Deep Learning Packages
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D Summary

The problem of over-fitting and under-fitting 1s a common problem in machine
learning and can be attacked with several techgniques:

Regularization, Data Augmentation, Early Stop, Dropout, ...
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Summary

- We have seen that 1n addition to fully connected feed forward ANN there are
other architecture, we have seen CNN which mimic the neuron connection
pattern of the mammal visual cortex

- It 1s particularly suited 1n data structured like 1images, when the information in
each pixel 1s not as important as the correlation among them
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“* Over/Under-fitting

The problem of over-fitting and under-fitting 1s a common problem in machine

-learning and can be attacked with several techniques:

-Regularization, Data Augmentation, Early Stop, Dropout, ...
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“# Unsupervised Learning

- Learn the structure of data
- Learn features in data
- Learn probability distribution of data

- Compress data

PCA: Suppose that I want to represent my data with a single number I chose the
direction of greatest variance
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- The Principal Component Analysis (PCA) 1s a way of compressing the data

- If data are located on a linear manifold, it is convenient to “get rid” of
reduntant dimensions

- In order to find the best representation of data in d-dimensions (d < n), we
choose the d dimensions with greatest variance

- PCA consists of finding the d orthogonal dimensions with greatest variance,
equivalent to diagonalise an n-dimension matrix and take the d-dimensional
sub-matrix
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A PCA-like method can be applied with a simple ANN

i

ANN with 1 hidden layer and no
(linear) activation function

The dimension of the hidden layer 1s d<n

The loss consists in minimising the
square error

The hidden layer spans the same space
at PCA, but the hg neurons are NOT

orthogonal / x
/

ANN 1s not an efficient way toapply .y _ p
PCA S N
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e Autoencoders
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Autoencoders (AE) are trained to reproduce the input
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For instance we can train the AE with the MNIST dataset to reproduce the
input
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The latent space 1s a compact representation of the MNIST dataset
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Latent Space

- We can visualise the latent space (in this case was a 2-d space)

- This 1s after training with MNIST, the color represent the different numbers
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Denoising AE

We can use AE to denoise the input:

] < )
We apply a Mask (simulates noise) Loss : Z(¢,0) = N Z [Xl- — Xl.’]

We predict X, diving as input X i=1
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“#" Example with MNIST

Application of denoising AE to corrupted MNIST sample

Original input, corrupted data, reconstructed data

Copyright by opendeep.org
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KL divergence

- The Kullback-Leibler (KL) divergence measures how different are two
probability density functions (Pdfs)
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KLD example

For a discrete distribution we have

P
KL[P@)|10W)] = Y P()Log ( (x) )

Q(x)
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KLD Properties

The KL divergence is always positive or zero (if the two PDFs are the same)

- KL [P(x)|| Q)| # KL |0(x) || P(x)]

If /=Ny, %) and N, = N(uy, 2,) are multidimensional normal
distributions
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Variational AE
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The goal of Variational Autoencoders (VAE) aims to find the distribution C]¢(Z | X)
such that we can generate the distribution for my sample X sampling from Z using

P X|Z)
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VAE are used to generate samples with the distribution learned from data
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AE vs VAE
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AE vs VAE
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VAE Loss

(A O NN Our goal is to use gradient
descent to learn the
/ parameters ¢, 0
P(x12)

Using Variational Inference it can be shown that the appropriate loss to
train VAE 1is:

L == Ey . ux [LogPyX|2)] + KL [gy| | P2)]
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VAE Loss

L =~ E,x |LogPyX|2)] + KL [gy| | P(2)]

Reconstruction Loss : T~ Regularizer

K
Sampling from Z with

\j’_{/ q,(Z| X)

&
We want to maximise the |

/E:\ probability of obtaining
Py X|Z)

X

We need to have a prior for Z,
P(Z) because we need to
know how to sample from Z,
¢.g. a normal distribution

We map the distribution data X into a known distribution P(Z)
We map the known distribution Z into the data distribution of X
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VAE Loss

L =~ Ez gz7x) |LogPyX|Z)| + KL |qq| | P(2)|
Data Fidelity — ' T~ KL Divergence
Ensures that the latent space

1s distributed according with
our prior

Ensure that sampling from Z
we get the data distribution X

This 1s equivalent to the

Avoid collapsing, 1.e. ensure
square error

that we do not get zero
variance, therefore that we
learn to generate new
samples
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* VAE pseudocode
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VAE example

MNIST from VAE using Pyro (pyro.ai)
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Figure 4: Samples from generative model.

Latent Variable T-SNE per Class

. B
o' °

‘ . .
254

‘ -

> : "%
5 = ‘.'
- @ ¢
e P ‘ . .
L

‘
E

-75 -50 -25 0 25 50 75 100

EEHHEEE!
£ 51 83 S Y (5 B ES1 E5
ERRENRDNRE

NEH!EH

9|
9
217
L3
5|7

Nico Serra 28 Machine Learning



11" Universitit
VAE Example
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w D) it Conditional VAE

VAE allow to generate the data distribution learned from data
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However, sometimes you want to generate a subset of data, e.g. you want to
generate the number 6 with different handwritings
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== Conditional VAE

In addition to the latent space, you add an input, for instance the
MNIST label

T A Y= A W N B

!l Ix( 1 ¢ [ 1 [ ] )

4 4

B By
s o

The latent space will specity style related things, while the
number 1s given by the labels
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CVAE Loss

The loss of the VAE 1s given by:

2z =—-Ez ;zx) |LogPy(X|Z)| + KL |gy| | P(2)]
Now we need to condition this loss to a label or a new variable 1

Z = - EZ~61¢(Z,X,£) [LOgP o X2, ¢ )] + KL [6]9| | PGz, f)]

AN

label
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e CVAE
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CVAE can be used, 1in addition to generate sub-samples of
data, to add features to samples

1 - University of Toronto
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e GANS

Gwda{a%w 201¢ S
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Generative Adversarial Networks (GANSs) are becoming very popular to generate
samples. The objective of GANSs 1s to minimise the distance between X and X’
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e GANS
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Goal: Pg(X,) ~ Pdata(X)
NB: X and X’ must have the same shape
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5 Training GANS

- GANEs are trained alternating Generator and |

Discriminator

- The goal of the Generator 1s to generate sam;

ples that reproduce the data

distribution, the goal of the Discriminator is to distinguish between “fake”

and “‘real” samples

- The Discriminator 1s a classifier

- The Generator 1s trained to fool the Discriminator

- The weights of the Generator (W) are fixed
Discriminator (Wp) and vice versa

when training the

- When Generator and Discriminator reach the Nash equilibrium, the
generated sample 1s undistinguishable from the data

Nico Serra 37
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5 Training GANS

Since D 1s a simple classifier its loss 1s the binary cross entropy

Label ~ Outputof D X samples are labelled as 1
\ ! X’ samples are labelled as O

Zp = [yLog® + (1 — y)Log(1 — $)]
A B

Z(D,1)=Log{D(X)} A

Z(D,0) =1 -0)Log{l —DX")} =Log{l — D(G(Z))} B
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<%= Tralning Discriminator

Zp = {Log(D(X)) + Log(1 — D[G(Z)])}

gn

/ \% I P

To train the Generator

(BN

D(X) - 1
D(G(Z)) - 0
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<= Tralning Generator

Zp = {Log(D(X)))+ Log(1 — D[G(Z)])}

This term does not depend on the generator

(BN

To train the Discriminator
Log[l — D(G(Z))] - — x
D(G(Z)) —» 1

Nico Serra 40 Machine Learning
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“% GAN Optimization

< = mingmaxp{Log[D(x)] + Log[1 — D(G(Z2))]}
Since we have a sample rather than a single event we get

Z = mingmaxp{Ex. p (LOg[D(X)]) + EZNPgLOg [1 = D(G(£))]}

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

For epochs:
For k steps:

- Sample trom Py (Z)=(Z: , 7> ,7Z3 ,...) and y=0
- Sample from Pyaa (X) = (X , X2, X3 ,...) and y=1
m

- Update D ascending VWD{% Z [Lo gD(X;) + Log(1 — D(G(Zi)))] }

1
- Sample trom Py (Z)=(Z: , 72 ,7Z3 ,...) and y=0

1 m
- Update G descending Vi, {— ) Log(1 — D(G(Z)))}
m 1
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“% Vanishing Gradient

- If we start with D[G(Z)]~0 the gradient is also ~0, so the weights will not
be updated
& oy (D(6>) |

P
D(6¢ e)]

A Zcé; C4 - DCG’(%))}

\ D ZGC%))

™ Vanishing Steep

gradient gradient\A

To solve this problem the cost for the generator can be changed to the equivalent

% = maxg (Egp (LogIDG@)]} )
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“#  Final GAN cost

Cost for the Discriminator:

& = maxp{Ex.p,, (LogID()]) + Ey_p Log[1 — D(G(Z))]}

Cost for the Generator:

Z = maxgi{Ez p Log[D(G(2))]]
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+= Mode Collapse

Suppose data 1s multimodal

The generator can fool the discriminator by only learning 1 mode, 1n the
worst case 1 example

A/\/\D
)\ x

> (5 p xa
There are several ways to prevent mode collapse, have a look here

https://medium.com/intel-student-ambassadors/reducing-mode-collapse-
in-gans-using-guided-latent-spaces-36152a08a668
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*= GAN Example

About Greg Heinrich

https://devblogs.nvidia.com/tag/gan/

Hidden Hidden Feature Feature
Inputs Units Units Maps Maps
10+100 10+1024 6272 10+128@7x7 10+128@14x14

Fully
Connected

Fully

Connected Conv

Feature Feature Hidden Hdden
Inputs Maps Maps Units Units
10+1@28x28 10+11@14x14 14@7x7 10+3626 1041024

Fully
Connected
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Outputs
1@28x28
Transpose
Conv
Outputs
1
Fully
Connected

Machine Learning



el
Hy)
=
wn
H
()]
2
c
-

GAN Example

https://devblogs.nvidia.com/tag/gan/
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About Greg Heinrich
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= GAN Example

About Greg Heinrich

https://devblogs.nvidia.com/tag/gan/

Figure 4: Each pair of images shows an image from the dataset and its reconstruction after going
through Generative Adversarial Networks E and G. 25 images from the dataset were used. Images
were not cherry picked.
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Conclusion

We have seen that unsupervised learning can be used to learn features in data,
learn the structure of data, generate data, add features, denoise data, style
transfter, ...

We have seen different architectures:
- Autoencoders

- Variational Autoencoders (https://www.tensorflow.org/tutorials/generative/
cvae)

- Generative Adversarial Networks (https://www.tensorflow.org/tutorials/
generative/dcgan, https://www.tensorflow.org/tutorials/generative/cyclegan,

https://www.tensorflow.org/tutorials/generative/pix2pix)
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