
Machine Learning and Data Analysis

 Unsupervised Learning: (Variational)-

AutoEncoders and GANs

Lecturer: Prof. Dr. Nico Serra1,2

1University of Zurich

2NUST-MISIS

1

https://www.physik.uzh.ch/en/researcharea/lhcb/team/senior-researchers/Serra.html

National University of Science and Technology of Moscow (NUST-MISIS)

https://www.physik.uzh.ch/en/researcharea/lhcb/team/senior-researchers/Serra.html

Summary

2Nico Serra Machine Learning

- We have seen that Neural Networks consist generally in several layers of
neurones with non-linear activation function

- Output function depends on the goal, we have seen, linear, sigmoid, soft-max,
but there could be more

Summary

3Nico Serra Machine Learning

- ANN are optimised using some variant of Gradient Descent:
- Several algorithms improve vanilla SGD such as Momentum, RMSProp,

Adam, … all these are available in modern Deep Learning Packages

4Nico Serra Machine Learning

Summary
- The problem of over-fitting and under-fitting is a common problem in machine

learning and can be attacked with several techqniques:
- Regularization, Data Augmentation, Early Stop, Dropout, …

5Nico Serra Machine Learning

Summary
C

lasses

- We have seen that in addition to fully connected feed forward ANN there are
other architecture, we have seen CNN which mimic the neuron connection
pattern of the mammal visual cortex

- It is particularly suited in data structured like images, when the information in
each pixel is not as important as the correlation among them

6Nico Serra Machine Learning

Over/Under-fitting
The problem of over-fitting and under-fitting is a common problem in machine

-learning and can be attacked with several techniques:
-Regularization, Data Augmentation, Early Stop, Dropout, ...

7Nico Serra Machine Learning

Unsupervised Learning
- Learn the structure of data
- Learn features in data
- Learn probability distribution of data
- Compress data

PCA: Suppose that I want to represent my data with a single number I chose the
direction of greatest variance

8Nico Serra Machine Learning

PCA
- The Principal Component Analysis (PCA) is a way of compressing the data
- If data are located on a linear manifold, it is convenient to “get rid” of

reduntant dimensions
- In order to find the best representation of data in d-dimensions (d < n), we

choose the d dimensions with greatest variance
- PCA consists of finding the d orthogonal dimensions with greatest variance,

equivalent to diagonalise an n-dimension matrix and take the d-dimensional
sub-matrix

9Nico Serra Machine Learning

PCA
A PCA-like method can be applied with a simple ANN

F : Xn → hd F−1 : hd → Xn

- ANN with 1 hidden layer and no
(linear) activation function

- The dimension of the hidden layer is d<n

- The loss consists in minimising the
square error

- The hidden layer spans the same space
at PCA, but the hd neurons are NOT
orthogonal

- ANN is not an efficient way to apply
PCA

10Nico Serra Machine Learning

Autoencoders

X′� = fϕ [gθ(X)] Loss : ℒ(ϕ, θ) =
1
N

N

∑
i=1

[Xi − X′�i]2

Autoencoders (AE) are trained to reproduce the input

11Nico Serra Machine Learning

AE example

- For instance we can train the AE with the MNIST dataset to reproduce the
input

- The latent space is a compact representation of the MNIST dataset

12Nico Serra Machine Learning

Latent Space

arXiv:1801.07648

- We can visualise the latent space (in this case was a 2-d space)
- This is after training with MNIST, the color represent the different numbers

13Nico Serra Machine Learning

Denoising AE
Loss : ℒ(ϕ, θ) =

1
N

N

∑
i=1

[Xi − X′�i]2
We can use AE to denoise the input:
- We apply a Mask (simulates noise)
- We predict X, diving as input  X̃

14Nico Serra Machine Learning

Example with MNIST

Loss : ℒ(ϕ, θ) =
1
N

N

∑
i=1

[Xi − X′�i]2

15Nico Serra Machine Learning

Example with MNIST
Application of denoising AE to corrupted MNIST sample

Original input, corrupted data, reconstructed data
Copyright by opendeep.org

16Nico Serra Machine Learning

Probability

17Nico Serra Machine Learning

KL divergence
- The Kullback-Leibler (KL) divergence measures how different are two
probability density functions (Pdfs)

KL [P(x) | |Q(x)] = ∫ P(x)Log (P(x)
Q(x)) dx

18Nico Serra Machine Learning

KLD example

KL [P(x) | |Q(x)] = ∑
i

P(x)Log (P(x)
Q(x))

For a discrete distribution we have

KL [P(x) | |Q(x)] = 0.25Log (0.25
0.333) + 0.5Log (0.5

0.333) + 0.25Log (0.25
0.333)

19Nico Serra Machine Learning

KLD Properties
- The KL divergence is always positive or zero (if the two PDFs are the same)

- KL [P(x) | |Q(x)] ≠ KL [Q(x) | |P(x)]

- If and are multidimensional normal
distributions

𝒩1 = N(μ1, Σ1) 𝒩2 = N(μ2, Σ2)

KL [𝒩1 | |𝒩1 |] =
1
2 [Log (|Σ1 |

|Σ2 |
− D + Tr(Σ−1

2 Σ1) + (μ1 − μ2)TΣ−1
2 (μ2 − μ1))]

20Nico Serra Machine Learning

Variational AE

The goal of Variational Autoencoders (VAE) aims to find the distribution
such that we can generate the distribution for my sample X sampling from Z using
pθ(X |Z)

qϕ(Z |X)

21Nico Serra Machine Learning

VAE

VAE are used to generate samples with the distribution learned from data

22Nico Serra Machine Learning

AE vs VAE

23Nico Serra Machine Learning

AE vs VAE

24Nico Serra Machine Learning

VAE Loss
Our goal is to use gradient
descent to learn the
parameters ϕ, θ

Using Variational Inference it can be shown that the appropriate loss to
train VAE is:

ℒ = − EZ∼qϕ(Z,X) [LogPθ(X |Z)] + KL [qθ | |P(z)]

25Nico Serra Machine Learning

VAE Loss
ℒ = − EZ∼qϕ(Z,X) [LogPθ(X |Z)] + KL [qθ | |P(z)]

Reconstruction Loss Regularizer

We want to maximise the
probability of obtaining

Sampling from Z with

qϕ(Z |X)

pθ(X |Z)

We need to have a prior for Z,
P(Z) because we need to
know how to sample from Z,
e.g. a normal distribution

- We map the distribution data X into a known distribution P(Z)
- We map the known distribution Z into the data distribution of X

26Nico Serra Machine Learning

VAE Loss
ℒ = − EZ∼qϕ(Z,X) [LogPθ(X |Z)] + KL [qθ | |P(z)]

KL DivergenceData Fidelity

Ensure that sampling from Z
we get the data distribution X

This is equivalent to the
square error

Ensures that the latent space
is distributed according with
our prior

Avoid collapsing, i.e. ensure
that we do not get zero
variance, therefore that we
learn to generate new
samples

27Nico Serra Machine Learning

VAE pseudocode

28Nico Serra Machine Learning

VAE example
MNIST from VAE using Pyro (pyro.ai)

29Nico Serra Machine Learning

VAE Example
Manga characters generated
with VAE (mc.ai)

30Nico Serra Machine Learning

Conditional VAE
VAE allow to generate the data distribution learned from data

However, sometimes you want to generate a subset of data, e.g. you want to
generate the number 6 with different handwritings

31Nico Serra Machine Learning

Conditional VAE
In addition to the latent space, you add an input, for instance the
MNIST label

The latent space will specify style related things, while the
number is given by the labels

32Nico Serra Machine Learning

CVAE Loss

ℒ = − EZ∼qϕ(Z,X) [LogPθ(X |Z)] + KL [qθ | |P(z)]

The loss of the VAE is given by:

Now we need to condition this loss to a label or a new variable l

ℒ = − EZ∼qϕ(Z,X,ℓ) [LogPθ(X |Z, ℓ)] + KL [qθ | |P(z, ℓ)]

label

33Nico Serra Machine Learning

CVAE

34Nico Serra Machine Learning

CVAE Example
CVAE can be used, in addition to generate sub-samples of
data, to add features to samples

J. Klys, J. Snell, R. Zanel - University of Toronto

35Nico Serra Machine Learning

GANs

Generative Adversarial Networks (GANs) are becoming very popular to generate
samples. The objective of GANs is to minimise the distance between X and X’

36Nico Serra Machine Learning

GANs

Goal: Pg(X′�) ∼ Pdata(X)
NB: X and X’ must have the same shape

37Nico Serra Machine Learning

Training GANs
- GANs are trained alternating Generator and Discriminator
- The goal of the Generator is to generate samples that reproduce the data

distribution, the goal of the Discriminator is to distinguish between “fake”
and “real” samples

- The Discriminator is a classifier
- The Generator is trained to fool the Discriminator
- The weights of the Generator (WG) are fixed when training the

Discriminator (WD) and vice versa
- When Generator and Discriminator reach the Nash equilibrium, the

generated sample is undistinguishable from the data

38Nico Serra Machine Learning

Training GANs

ℒD = [yLog(̂y) + (1 − y)Log(1 − ̂y)]
A B

Label Output of D X samples are labelled as 1
X’ samples are labelled as 0

Since D is a simple classifier its loss is the binary cross entropy

ℒ(D,1) = Log{D(X)}

ℒ(D,0) = (1 − 0)Log{1 − D(X′�)} = Log{1 − D(G(Z))}

A

B

39Nico Serra Machine Learning

Training Discriminator
ℒD = {Log(D(X)) + Log(1 − D[G(Z)])}

To train the Generator

D(G(Z)) → 0
D(X) → 1

40Nico Serra Machine Learning

Training Generator
ℒD = {Log(D(X)) + Log(1 − D[G(Z)])}

To train the Discriminator

D(G(Z)) → 1
Log[1 − D(G(Z))] → − ∞

This term does not depend on the generator

41Nico Serra Machine Learning

GAN Optimization
ℒ = minGmaxD{Log[D(x)] + Log[1 − D(G(Z))]}

Since we have a sample rather than a single event we get

ℒ = minGmaxD{EX∼Pdata (Log[D(x)]) + EZ∼Pg
Log[1 − D(G(Z))]}

For epochs:
For k steps:

- Sample from Pg (Z)=(Z1 , Z2 , Z3 ,…) and y=0
- Sample from Pdata (X) = (X1 , X2 , X3 ,…) and y=1
- Update D ascending

- Sample from Pg (Z)=(Z1 , Z2 , Z3 ,…) and y=0

- Update G descending

∇WD
{

1
m

m

∑
1

[LogD(Xi) + Log(1 − D(G(Zi)))]}

∇WG
{

1
m

m

∑
1

Log(1 − D(G(Zi)))}

42Nico Serra Machine Learning

Vanishing Gradient
- If we start with D[G(Z)]~0 the gradient is also ~0, so the weights will not
be updated

To solve this problem the cost for the generator can be changed to the equivalent

ℒG = maxG (EZ∼Pg
{Log[D(G(Z))]})

Vanishing
gradient

Steep
gradient

43Nico Serra Machine Learning

Final GAN cost
Cost for the Discriminator:

Cost for the Generator:

ℒ = maxD{EX∼Pdata (Log[D(x)]) + EZ∼Pg
Log[1 − D(G(Z))]}

ℒ = maxG{EZ∼Pg
Log[D(G(Z))]}

44Nico Serra Machine Learning

Mode Collapse
- Suppose data is multimodal
- The generator can fool the discriminator by only learning 1 mode, in the

worst case 1 example

- There are several ways to prevent mode collapse, have a look here
https://medium.com/intel-student-ambassadors/reducing-mode-collapse-
in-gans-using-guided-latent-spaces-36f52a08a668

https://medium.com/intel-student-ambassadors/reducing-mode-collapse-in-gans-using-guided-latent-spaces-36f52a08a668
https://medium.com/intel-student-ambassadors/reducing-mode-collapse-in-gans-using-guided-latent-spaces-36f52a08a668

45Nico Serra Machine Learning

GAN Example
https://devblogs.nvidia.com/tag/gan/

About Greg Heinrich

46Nico Serra Machine Learning

GAN Example
https://devblogs.nvidia.com/tag/gan/

About Greg Heinrich

47Nico Serra Machine Learning

GAN Example
https://devblogs.nvidia.com/tag/gan/

About Greg Heinrich

48Nico Serra Machine Learning

Conclusion
- We have seen that unsupervised learning can be used to learn features in data,

learn the structure of data, generate data, add features, denoise data, style
transfer, …

- We have seen different architectures:
- Autoencoders
- Variational Autoencoders (https://www.tensorflow.org/tutorials/generative/

cvae)
- Generative Adversarial Networks (https://www.tensorflow.org/tutorials/

generative/dcgan, https://www.tensorflow.org/tutorials/generative/cyclegan,
https://www.tensorflow.org/tutorials/generative/pix2pix)

https://www.tensorflow.org/tutorials/generative/cvae
https://www.tensorflow.org/tutorials/generative/cvae
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/cyclegan
https://www.tensorflow.org/tutorials/generative/pix2pix

