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- We have seen that Neural Networks consist generally in several layers of 
neurones with non-linear activation function

- Output function depends on the goal, we have seen, linear, sigmoid, soft-max, 
but there could be more
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- ANN are optimised using some variant of Gradient Descent:
- Several algorithms improve vanilla SGD such as Momentum, RMSProp, 

Adam, … all these are available in modern Deep Learning Packages 
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Summary
- The problem of over-fitting and under-fitting is a common problem in machine 

learning and can be attacked with several techqniques:
- Regularization, Data Augmentation, Early Stop, Dropout, …
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Summary
C

lasses

- We have seen that in addition to fully connected feed forward ANN there are 
other architecture, we have seen CNN which mimic the neuron connection 
pattern of the mammal visual cortex

- It is particularly suited in data structured like images, when the information in 
each pixel is not as important as the correlation among them
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Over/Under-fitting
The problem of over-fitting and under-fitting is a common problem in machine 

-learning and can be attacked with several techniques: 
-Regularization, Data Augmentation, Early Stop, Dropout, ... 
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Unsupervised Learning
- Learn the structure of data
- Learn features in data
- Learn probability distribution of data
- Compress data

PCA: Suppose that I want to represent my data with a single number I chose the 
direction of greatest variance
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PCA
- The Principal Component Analysis (PCA) is a way of compressing the data
- If data are located on a linear manifold, it is convenient to “get rid” of 

reduntant  dimensions
- In order to find the best representation of data in d-dimensions (d < n), we 

choose the d dimensions with greatest variance 
- PCA consists of finding the d orthogonal dimensions with greatest variance, 

equivalent to diagonalise an n-dimension matrix and take the d-dimensional 
sub-matrix 
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PCA
A PCA-like method can be applied with a simple ANN

F : Xn → hd F−1 : hd → Xn

- ANN with 1 hidden layer and no 
(linear) activation function

- The dimension of the hidden layer is d<n

- The loss consists in minimising the 
square error

- The hidden layer spans the same space 
at PCA, but the hd neurons are NOT 
orthogonal

- ANN is not an efficient way to apply 
PCA
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Autoencoders

X′� = fϕ [gθ(X)] Loss : ℒ(ϕ, θ) =
1
N

N

∑
i=1

[Xi − X′�i]2

Autoencoders (AE) are trained to reproduce the input
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AE example

- For instance we can train the AE with the MNIST dataset to reproduce the 
input

- The latent space is a compact representation of the MNIST dataset
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Latent Space

arXiv:1801.07648

- We can visualise the latent space (in this case was a 2-d space)
- This is after training with MNIST, the color represent the different numbers
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Denoising AE
Loss : ℒ(ϕ, θ) =

1
N

N

∑
i=1

[Xi − X′�i]2
We can use AE to denoise the input:
- We apply a Mask (simulates noise)
- We predict X, diving as input  X̃
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Example with MNIST

Loss : ℒ(ϕ, θ) =
1
N

N

∑
i=1

[Xi − X′�i]2
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Example with MNIST
Application of denoising AE to corrupted MNIST sample

Original input, corrupted data, reconstructed data
Copyright by opendeep.org
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Probability
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KL divergence
- The Kullback-Leibler (KL) divergence measures how different are two 
probability density functions (Pdfs)

KL [P(x) | |Q(x)] = ∫ P(x)Log ( P(x)
Q(x) ) dx
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KLD example

KL [P(x) | |Q(x)] = ∑
i

P(x)Log ( P(x)
Q(x) )

For a discrete distribution we have

KL [P(x) | |Q(x)] = 0.25Log ( 0.25
0.333 ) + 0.5Log ( 0.5

0.333 ) + 0.25Log ( 0.25
0.333 )
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KLD Properties
- The KL divergence is always  positive or zero (if the two PDFs are the same)

- KL [P(x) | |Q(x)] ≠ KL [Q(x) | |P(x)]

- If                              and                                  are multidimensional normal 
distributions

𝒩1 = N(μ1, Σ1) 𝒩2 = N(μ2, Σ2)

KL [𝒩1 | |𝒩1 |] =
1
2 [Log ( |Σ1 |

|Σ2 |
− D + Tr(Σ−1

2 Σ1) + (μ1 − μ2)TΣ−1
2 (μ2 − μ1))]
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Variational AE

The goal of Variational Autoencoders (VAE) aims to find the distribution               
such that we can generate the distribution for my sample X sampling from Z using
pθ(X |Z)

qϕ(Z |X)
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VAE

VAE are used to generate samples with the distribution learned from data 
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AE vs VAE
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AE vs VAE
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VAE Loss
Our goal is to use gradient 
descent to learn the 
parameters ϕ, θ

Using Variational Inference it can be shown that the appropriate loss to 
train VAE is: 

ℒ = − EZ∼qϕ(Z,X) [LogPθ(X |Z)] + KL [qθ | |P(z)]
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VAE Loss
ℒ = − EZ∼qϕ(Z,X) [LogPθ(X |Z)] + KL [qθ | |P(z)]

Reconstruction Loss Regularizer

We want to maximise the 
probability of obtaining

Sampling from Z with

qϕ(Z |X)

pθ(X |Z)

We need to have a prior for Z, 
P(Z) because we need to 
know how to sample from Z, 
e.g. a normal distribution

- We map the distribution data X into a known distribution P(Z)
- We map the known distribution Z into the data distribution of X
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VAE Loss
ℒ = − EZ∼qϕ(Z,X) [LogPθ(X |Z)] + KL [qθ | |P(z)]

KL DivergenceData Fidelity

Ensure that sampling from Z 
we get the data distribution X

This is equivalent to the 
square error

Ensures that the latent space 
is distributed according with 
our prior

Avoid collapsing, i.e. ensure 
that we do not get zero 
variance, therefore that we 
learn to generate new 
samples
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VAE pseudocode
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VAE example
MNIST from VAE using Pyro (pyro.ai)
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VAE Example
Manga characters generated 
with VAE (mc.ai)
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Conditional VAE
VAE allow to generate the data distribution learned from data

However, sometimes you want to generate a subset of data, e.g. you want to 
generate the number 6 with different handwritings
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Conditional VAE
In addition to the latent space, you add an input, for instance the 
MNIST label

The latent space will specify style related things, while the 
number is given by the labels
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CVAE Loss

ℒ = − EZ∼qϕ(Z,X) [LogPθ(X |Z)] + KL [qθ | |P(z)]

The loss of the VAE is given by:

Now we need to condition this loss to a label or a new variable l

ℒ = − EZ∼qϕ(Z,X,ℓ) [LogPθ(X |Z, ℓ)] + KL [qθ | |P(z, ℓ)]

label
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CVAE
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CVAE Example
CVAE can be used, in addition to generate sub-samples of 
data, to add features to samples

J. Klys, J. Snell, R. Zanel - University of Toronto
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GANs

Generative Adversarial Networks (GANs) are becoming very popular to generate 
samples. The objective of GANs is to minimise the distance between X and X’
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GANs

Goal: Pg(X′�) ∼ Pdata(X)
NB: X and X’ must have the same shape
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Training GANs
- GANs are trained alternating Generator and Discriminator
- The goal of the Generator is to generate samples that reproduce the data 

distribution, the goal of the Discriminator is to distinguish between “fake” 
and “real” samples 

- The Discriminator is a classifier
- The Generator is trained to fool the Discriminator
- The weights of the Generator (WG) are fixed when training the 

Discriminator (WD) and vice versa
- When Generator and Discriminator reach the Nash equilibrium, the 

generated sample is undistinguishable from the data
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Training GANs

ℒD = [yLog( ̂y) + (1 − y)Log(1 − ̂y)]
A B

Label Output of D X samples are labelled as 1
X’ samples are labelled as 0

Since D is a simple classifier its loss is the binary cross entropy

ℒ(D,1) = Log{D(X)}

ℒ(D,0) = (1 − 0)Log{1 − D(X′�)} = Log{1 − D(G(Z))}

A

B
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Training Discriminator
ℒD = {Log(D(X)) + Log(1 − D[G(Z)])}

To train the Generator 

D(G(Z)) → 0
D(X) → 1
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Training Generator
ℒD = {Log(D(X)) + Log(1 − D[G(Z)])}

To train the Discriminator 

D(G(Z)) → 1
Log[1 − D(G(Z))] → − ∞

This term does not depend on the generator
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GAN  Optimization
ℒ = minGmaxD{Log[D(x)] + Log[1 − D(G(Z))]}

Since we have a sample rather than a single event we get

ℒ = minGmaxD{EX∼Pdata (Log[D(x)]) + EZ∼Pg
Log[1 − D(G(Z))]}

For epochs:
For k steps:

- Sample from Pg (Z)=(Z1 , Z2 , Z3 ,…) and y=0
- Sample from Pdata (X) = (X1 , X2 , X3 ,…) and y=1
- Update D ascending 

- Sample from Pg (Z)=(Z1 , Z2 , Z3 ,…) and y=0

- Update G descending 

∇WD
{

1
m

m

∑
1

[LogD(Xi) + Log(1 − D(G(Zi)))]}

∇WG
{

1
m

m

∑
1

Log(1 − D(G(Zi)))}
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Vanishing Gradient
- If we start with D[G(Z)]~0 the gradient is also ~0, so the weights will not 
be updated

To solve this problem the cost for the generator can be changed to the equivalent

ℒG = maxG (EZ∼Pg
{Log[D(G(Z))]})

Vanishing 
gradient

Steep 
gradient
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Final GAN cost
Cost for the Discriminator:

Cost for the Generator:

ℒ = maxD{EX∼Pdata (Log[D(x)]) + EZ∼Pg
Log[1 − D(G(Z))]}

ℒ = maxG{EZ∼Pg
Log[D(G(Z))]}
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Mode Collapse
- Suppose data is multimodal
- The generator can fool the discriminator by only learning 1 mode, in the 

worst case 1 example

- There are several ways to prevent mode collapse, have a look here 
https://medium.com/intel-student-ambassadors/reducing-mode-collapse-
in-gans-using-guided-latent-spaces-36f52a08a668

https://medium.com/intel-student-ambassadors/reducing-mode-collapse-in-gans-using-guided-latent-spaces-36f52a08a668
https://medium.com/intel-student-ambassadors/reducing-mode-collapse-in-gans-using-guided-latent-spaces-36f52a08a668


45Nico Serra Machine Learning

GAN Example
https://devblogs.nvidia.com/tag/gan/

About Greg Heinrich
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GAN Example
https://devblogs.nvidia.com/tag/gan/

About Greg Heinrich
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GAN Example
https://devblogs.nvidia.com/tag/gan/

About Greg Heinrich
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Conclusion
- We have seen that unsupervised learning can be used to learn features in data, 

learn the structure of data, generate data, add features, denoise data, style 
transfer, …

- We have seen different architectures:
- Autoencoders
- Variational Autoencoders (https://www.tensorflow.org/tutorials/generative/

cvae)
- Generative Adversarial Networks (https://www.tensorflow.org/tutorials/

generative/dcgan, https://www.tensorflow.org/tutorials/generative/cyclegan, 
https://www.tensorflow.org/tutorials/generative/pix2pix)

https://www.tensorflow.org/tutorials/generative/cvae
https://www.tensorflow.org/tutorials/generative/cvae
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/cyclegan
https://www.tensorflow.org/tutorials/generative/pix2pix

