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System of units c = ~ =1

In this system of units the only nontrivial dimension is the dimension of mass M .

Time and length have the dimension of 1/M . This follows immediately from the

de�nition of the Plank onstant E = ~ω, so for the dimensions whih are denoted by

square brakets one an write

[~] = [
ML2

T
], [c] = [

L

t
], (1)

so if c = ~ =1 then [L] = [T ] = [ 1
M

]. For the partile with mass M the value of 1/M
is the Compton wavelength.
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System of units c = ~ =1

1 GeV = 1.6·10−10
J = 1.6· 10−10

kg m

2
/ s

2

(Problem: Find in J the eletron energy m =0.511 MeV in the potential ∆U 10

9
V )

writing down E = mc2 ⇒ m at =1

1 GeV = m · 9·1016m2
/s

2
= 1.6·10−10

kg m

2
/s

2

1 GeV/c2 = 1.78·10−27
kg

then E2 = p2 +m2
( not E2 =

→
p
2
c2 +m2c4 )

Compton wavelength is measured in inverse GeV (in the following [dimension℄ is indiated

in square brakets)

[m℄ λ = ~

mc
⇒ 1

m
, GeV

−1
=0.197·10−15

m

= 0.197 fm, 1 fm = 10

−15
m

Time is also measured in inverse GeV:

[s℄

λ
c
= ~

mc2
⇒ 1

m
, GeV

−1
=6.582·10−25

s
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System of units c = ~ =1

Observable kg, m, s GeV, ~, c ~=c=1

Time s (GeV/~)
−1

GeV

−1

Length m (GeV/~ñ)−1
GeV

−1

Square m

2
(GeV/~)−2

GeV

−2

Energy kg m

2
s

−2
GeV GeV

Momentum kg m

2
s

−1
GeV/c GeV

Mass kg GeV/c2 GeV

Òàáëèöà: Units in the system c=~=1 in omparison with SI. Transformation fators. Useful

relation

~c = 0.197 GeV × fermi
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Leture 4, slide 7. Lagrangian symmetries and onserved urrents.

Ation of a salar �eld ϕ(x) in a general form (∂µ = ∂/∂xµ)

S =

∫

L
(

ϕI(x),
∂ϕI (x)

∂xµ

)

d4x (2)

where the index I orresponds to a set of �elds. In the following we use the notation

∂ϕI (x)
∂xµ

= ϕI
,µ. Variation of ation (1)

δS =

∫

[ ∂L
∂ϕI

δϕI +
∂L
∂ϕI

,µ

∂µ(δϕ
I )
]

d4x (3)

sum over I is taken. Integrating the seond term by parts and assuming that variations

of �elds are zero at the boundary of a spae-time domain we get

δS =

∫

[ ∂L
∂ϕI

δϕI − ∂µ
∂L
∂ϕI

,µ

]

(δϕI )d4x (4)

so I equations of motion for the �elds ϕI
follow from the requirement δS =0

∂µ
∂L
∂ϕI

,µ

− ∂L
∂ϕI

= 0. (5)
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Leture 4, slide 7. Lagrangian symmetries and onserved urrents.

Let us onsider in�nitesimal transformations of the general form

ϕI =⇒ ϕ
′I = (δIJ + ǫatIJa )ϕJ

(6)

where ǫa are in�nitesimal transformation parameters and tIJ are some numerial

parameters haraterizing the transformation. Then variations of the �eld and the �eld

derivative are

δϕI = ǫatIJa ϕJ , δϕI
,µ = ǫatIJa ∂µϕ

J
(7)

so variation of the Lagrangian when we shift the �eld by δϕI
and the derivative of

�eld by δϕI
,µ looks as

∂L
∂ϕI

δϕI +
∂L
∂ϕI

,µ

tIJa ∂µϕ
J = 0 (8)

and is equal to zero due to invariane of L with respet to transformations (5). Here

we omitted the independent parameters ǫa. Using the �eld equation (4) we an write

the derivative ∂µ(∂L/∂ϕI
,µ) instead of ∂L/ϕI

in the �rst term of (7). After that sum

of two terms forms the full derivative whih expresses the onservation of urrent

Ja
µ =

∂L
∂ϕI

,µ

tIJa ∂µϕ
J , ∂µJ

a
µ = 0. (9)
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Leture 4, slide 7. Lagrangian symmetries and onserved urrents.

Problem 1 starts from the Lagrangian for omplex salar �eld

L = ∂µϕ∂µϕ
∗ −m2ϕϕ∗

(10)

where ϕ and ϕ∗
are onsidered as independent �elds, so ϕI

, I = 1, 2 above denotes

ϕ, ϕ∗
. This Lagrangian is invariant with respet to

ϕ =⇒ ϕ
′

= eiǫϕ, ϕ∗ =⇒ ϕ
′∗ = eiǫϕ∗

(11)

so the following alulation of the onserved urrent (7) is straightforward.

Problem 1a: Show that the harge Q de�ned as

Q =

∫

J0d
3x (12)

is onserved, ∂0Q = 0. Calulate Q for the ase of the solution of (3) whih has the

form ϕ = Ne−i(kr−ωt)
(plane wave, ω2 = k2 +m2

), where N is the normalisation

fator de�ned by normalisation of the energy of the �eld. Calulate N . Calulate the

value of Q for this ase.
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Leture 4, slide 11. SU(2) symmetry and resonane deays. C-parity

(1) Mesons and baryons form isotopi multiplets whih are desribed by irreduible

representations of SU(2) group
(2) In�nitesimal operators ti of these representations, [ti, tj ] = iǫijktk are alled the

isotopi spin operators. The operator t2 = t21 + t22 + t23, t
2 = I(I + 1)E, E is unit

operator, I is the isotopi spin of the multiplet. Eletri harge of a partile -

omponent of an isotopi multiplet - is expressed by means of t3 and hyperharge Y

Q = t3 +
Y

2
(13)

whih is known as Gell-Mann - Nishijima formula.

Examples

Proton and neutron form an isotopi doublet I =1/2 under the name nuleon. In

terms of SU(2) they are desibed by ovariant isotopi spinor φα =

(

φ1
φ2

)

de�ned

in the basis eα (eαeβ = δαβ
)

e1 =

(

1
0

)

, e2 =

(

0
1

)

basis vetors are transformed as eα
′

= Uβαe
β
, so ϕ

′

α = Uαβϕβ (fundamental

representation, SU(2) transformation is idential to group representation). We an

write

p =

(

1
0

)

⊗ ψ(x), n =

(

0
1

)

⊗ ψ(x), or N =

(

p
n

)
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Leture 4, slide 11. SU(2) symmetry and resonane deays.

π±
and π0

mesons form an isotopi triplet I =1 and are desribed by the seond rank

isotopi spinor transformed as U ⊗ U∗
, with one upper and one lower index. Suh

spinor is a sum of a spinor with zero trae and Kroneker term δab :

ϕa
b = (ϕa

b − 1

2
δabϕ

c
c) +

1

2
δabϕ

c
c,

whih form two SU(2) invariant supspaes. Zero trae basis looks as

e12,
1√
2
(e11 − e22), e21

and the one-dimensional spae basis vetor

1√
2
(e11 + e22)

is ortogonal to the three basis veor for zero-trae supspae. Matrix form looks as

e+ =

(

0 1
0 0

)

, e0 =

(

1√
2

0

0 − 1√
2

)

, e− =

(

0 0
1 0

)
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Leture 4, slide 11. SU(2) symmetry and resonane deays.

so for the triplet of π-mesons we have the form

πa
b =

(

1√
2
π0 π+

π− − 1√
2
π0

)

Suh form is very onvenient to de�ne harge onjugation C, when

π+ → π−, π− → π+, π0 → π0

whih an be written in the matrix form

πa
b → πb

a or, equivalently Cπa
bC

+ = πb
a

Important SU(2) transformation is the harge symmetry transformation where the

matrix is

CS =

(

0 1
−1 0

)

= iσ2

Matrix elements should be invariant under CS. Suh transformation for the nuleon

isotopi doublet

CS

(

p
n

)

=

(

n
−p

)
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Leture 4, slide 11. SU(2) symmetry and resonane deays.

CS transformation for the pion triplet

CS

(

1√
2
π0 π+

π− − 1√
2
π0

)

CS+ =

(

− 1√
2
π0 −π−

−π+ 1√
2
π0

)

Important point is the relation between omponents of the isotopi spinor πa
b and

3-vetors. Let us expand πa
b in the basis of Pauli matries

πb
a =

1√
2
(τi)

b
aVi, (2A)

then it is well-known that Vi = (V1, V2, V3) transform as the 3-vetor omponents

whih an be easily found:

Vi =
1√
2
(τi)

a
bϕ

b
a =

1√
2
Sp(τiϕ) (2B)

. Normalization ondition

ViV
∗
i = (ϕ+)abϕ

b
a = Sp(ϕ+ϕ).

Using these formulae a relation between e+, e0, e− and the Cartesian basis ex, ey, ez
for 3-vetors Vi an be easily found

e+ =
1√
2
(ex + iey), e0 = ez, e− =

1√
2
(ex − iey)

.
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Leture 4, slide 11. SU(2) symmetry and resonane deays.

To write SU(2) invariant Lagrangian for nuleon-π interation, ompose the form

N
a
πc
dNb and take a sum over upper and lower pair of indies, so we have line ×

matrix × olumn, whih is SU(2) salar. Then the Lagrangian(gπNN

√
2 - oupling

onstant)

LπNN = gπNN

√
2N

a
πb
aNb

or in terms of 3-vetor Vi
Lint = gπNN NτiπiN

Substituting here matrix expressions we �nd an expliit form

LπNN = gπNN [
√
2pnπ+ +

√
2npπ− + (pp− nn)π0]

Less trivial example: deay of f0(1270) meson (T =0) to the two π-mesons (T=1),

f0 → π(p1)π(p2), where p1 and p2 are 4-momenta. SU(2) invariant matrix element

of this deay has the form

M(f0 → ππ) = gfππf
0πa

bπ
b
a = gf0[π+(p1)π

−(p2)+π
−(p1)π

+(p2)+π
0(p1)π

0(p2)]

so the probability of the hannel π+π−
is higher by a fator of 2 than of the hannel

π0π0

BR(f0 → π+π−)

BR(f0 → π0π0)
= 2
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Problem 2. SU(2) symmetry and resonane deays.

Note that M(f0 → ππ) is C-invariant only if the C-parity of the f0 meson is equal to

+1. Indeed, under C transformation

f0 → f0, πa
bπ

b
a =⇒ πb

aπ
a
b identical to πa

b π
b
a

This matrix elemant respets also Bose statistis, sine 2π are in D-state (f0 has

spatial spin 2 and P parity +1) so the spatial wave funtion (not written in the

formulas above) is symmetri under p1 → p2, p2 → p1 and also the isotopi matrix

element.

Brief denomination of Partile Data: f0(1270) IG(JPC) = 0+2++
.

For example, ϕ(1020) meson, IG(JPC) = 0−1−−
, deay to 2π is desribed by the

matrix element of the same struture, as above. However, under C transformation

ϕ → −ϕ, so onservation of C invariane does not allow ϕ → ππ.

Problem 2, Leture 4 Matrix element of ρ(1450) whih is isotopi triplet I =1,

IG(JPC) = 1+1−−
, CρabC

+ = −ρba to ππ is desribed by SU(2) invariant matrix

element, invariant under C:

M(ρ → ππ) = gρabπ
b
cπ

c
a

This matrix element de�nes relations between deay hannels.
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Problem 2. SU(2) symmetry and resonane deays.

�èñ.: see https : //pdg.lbl.gov/2020/tables/contents _ tables.html
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Problem 2. SU(2) symmetry and resonane deays.
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PDG tables � G parity

After C transformation the neutral partiles are transformed into themselves, their

wave funtion is not hanged (C parity +1) or hanges sign (C parity -1). Charged

partiles are transformed to their antipartiles, so they do not have C-parity. We an

generalize the notion of C-parity for (anti)partiles from the same isotopi multiplet,

ombining C transformation and CS transformation, so G = C × CS. For example,

C-transformation for π triplet

π− → π+, π+ → π−, π0 → π0

Under CS transformation desribed above

π− → −π+, π+ → −π−, π0 → −π0

Combining C and CS, we have

π− → −π−, π+ → −π+, π0 → −π0

so G-parity of the pion triplet is -1, or pions are eigenstates of the C × CS with the

eigenvalue -1. G-parity onservation does not allow, for example, ρ → 3π, φ → 2π and

so on. The value of G is indiated in the standard PDG denomination IG(JPC).
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