Appendix to Lecture 1 and Lecture 4 by A.I.Shevchenko "Basics of particle physics"

M.N.Dubinin

(1) System of units $c=\hbar=1$
(2) Symmetries of the Lagrangian, conserved currents (Lecture 4, slide 7, problem 1)
(3) $S U(2)$ symmetry, C, G-parity and resonance decays (Lecture 4, slide 11, problem 2) Notations in Particle Data Group tables.

NUST MISiS
October 2021

System of units $c=\hbar=1$

In this system of units the only nontrivial dimension is the dimension of mass M. Time and length have the dimension of $1 / M$. This follows immediately from the definition of the Planck constant $E=\hbar \omega$, so for the dimensions which are denoted by square brackets one can write

$$
\begin{equation*}
[\hbar]=\left[\frac{M L^{2}}{T}\right], \quad[c]=\left[\frac{L}{t}\right] \tag{1}
\end{equation*}
$$

so if $c=\hbar=1$ then $[L]=[T]=\left[\frac{1}{M}\right]$. For the particle with mass M the value of $1 / M$ is the Compton wavelength.

System of units $c=\hbar=1$

$1 \mathrm{GeV}=1.6 \cdot 10^{-10} \mathrm{~J}=1.6 \cdot 10^{-10} \mathrm{~kg} \mathrm{~m}{ }^{2} / \mathrm{s}^{2}$
(Problem: Find in J the electron energy $m=0.511 \mathrm{MeV}$ in the potential $\Delta U 10^{9} \mathrm{~V}$)
writing down $E=m c^{2} \Rightarrow m$ at $\mathrm{c}=1$
$1 \mathrm{GeV}=\mathrm{m} \cdot 9 \cdot 10^{16} \mathrm{~m}^{2} / \mathrm{s}^{2}=1.6 \cdot 10^{-10} \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$
$1 \mathrm{GeV} / c^{2}=1.78 \cdot 10^{-27} \mathrm{~kg}$
then $E^{2}=p^{2}+m^{2}\left(\operatorname{not} E^{2}=\vec{p}^{2} c^{2}+m^{2} c^{4}\right)$
Compton wavelength is measured in inverse GeV (in the following [dimension] is indicated in square brackets)
[m] $\lambda=\frac{\hbar}{m c} \Rightarrow \frac{1}{m}, \mathrm{GeV}^{-1}=0.197 \cdot 10^{-15} \mathrm{~m}$
$=0.197 \mathrm{fm}, \quad 1 \mathrm{fm}=10^{-15} \mathrm{~m}$
Time is also measured in inverse GeV :
[s] $\frac{\lambda}{c}=\frac{\hbar}{m c^{2}} \Rightarrow \frac{1}{m}, \mathrm{GeV}^{-1}=6.582 \cdot 10^{-25} \mathrm{~s}$

System of units $c=\hbar=1$

Observable	$\mathrm{kg}, \mathrm{m}, \mathrm{s}$	GeV, \hbar, c	$\hbar=c=1$
Time	s	$(\mathrm{GeV} / \hbar)^{-1}$	GeV^{-1}
Length	m	$(\mathrm{GeV} / \hbar \mathrm{c})^{-1}$	GeV^{-1}
Square	m^{2}	$(\mathrm{GeV} / \hbar \mathrm{c})^{-2}$	GeV^{-2}
Energy	$\mathrm{kg} \mathrm{m} \mathrm{m}^{2} \mathrm{~s}^{-2}$	GeV	GeV
Momentum	$\mathrm{kg} \mathrm{m} \mathrm{m}^{2} \mathrm{~s}^{-1}$	GeV / c	GeV
Mass	kg	GeV / c^{2}	GeV

Таблица: Units in the system $c=\hbar=1$ in comparison with SI. Transformation factors. Useful relation

$$
\hbar c=0.197 \mathrm{GeV} \times \text { fermi }
$$

Lecture 4, slide 7. Lagrangian symmetries and conserved currents.

Action of a scalar field $\varphi(x)$ in a general form ($\partial_{\mu}=\partial / \partial x_{\mu}$)

$$
\begin{equation*}
S=\int \mathcal{L}\left(\varphi^{I}(x), \frac{\partial \varphi^{I}(x)}{\partial x_{\mu}}\right) d^{4} x \tag{2}
\end{equation*}
$$

where the index I corresponds to a set of fields. In the following we use the notation $\frac{\partial \varphi^{I}(x)}{\partial x_{\mu}}=\varphi_{, \mu}^{I}$. Variation of action (1)

$$
\begin{equation*}
\delta S=\int\left[\frac{\partial \mathcal{L}}{\partial \varphi^{I}} \delta \varphi^{I}+\frac{\partial \mathcal{L}}{\partial \varphi_{, \mu}^{I}} \partial_{\mu}\left(\delta \varphi^{I}\right)\right] d^{4} x \tag{3}
\end{equation*}
$$

sum over I is taken. Integrating the second term by parts and assuming that variations of fields are zero at the boundary of a space-time domain we get

$$
\begin{equation*}
\delta S=\int\left[\frac{\partial \mathcal{L}}{\partial \varphi^{I}} \delta \varphi^{I}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial \varphi_{, \mu}^{I}}\right]\left(\delta \varphi^{I}\right) d^{4} x \tag{4}
\end{equation*}
$$

so I equations of motion for the fields φ^{I} follow from the requirement $\delta S=0$

$$
\begin{equation*}
\partial_{\mu} \frac{\partial \mathcal{L}}{\partial \varphi_{, \mu}^{I}}-\frac{\partial \mathcal{L}}{\partial \varphi^{I}}=0 \tag{5}
\end{equation*}
$$

Lecture 4, slide 7. Lagrangian symmetries and conserved currents.

Let us consider infinitesimal transformations of the general form

$$
\begin{equation*}
\varphi^{I} \Longrightarrow \varphi^{\prime} I=\left(\delta^{I J}+\epsilon^{a} t_{a}^{I J}\right) \varphi^{J} \tag{6}
\end{equation*}
$$

where ϵ^{a} are infinitesimal transformation parameters and $t^{I J}$ are some numerical parameters characterizing the transformation. Then variations of the field and the field derivative are

$$
\begin{equation*}
\delta \varphi^{I}=\epsilon^{a} t_{a}^{I J} \varphi^{J}, \quad \delta \varphi_{, \mu}^{I}=\epsilon^{a} t_{a}^{I J} \partial_{\mu} \varphi^{J} \tag{7}
\end{equation*}
$$

so variation of the Lagrangian when we shift the field by $\delta \varphi^{I}$ and the derivative of field by $\delta \varphi_{, \mu}^{I}$ looks as

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \varphi^{I}} \delta \varphi^{I}+\frac{\partial \mathcal{L}}{\partial \varphi_{, \mu}^{I}} t_{a}^{I J} \partial_{\mu} \varphi^{J}=0 \tag{8}
\end{equation*}
$$

and is equal to zero due to invariance of \mathcal{L} with respect to transformations (5). Here we omitted the independent parameters ϵ^{a}. Using the field equation (4) we can write the derivative $\partial_{\mu}\left(\partial \mathcal{L} / \partial \varphi_{, \mu}^{I}\right)$ instead of $\partial \mathcal{L} / \varphi^{I}$ in the first term of (7). After that sum of two terms forms the full derivative which expresses the conservation of current

$$
\begin{equation*}
J_{\mu}^{a}=\frac{\partial \mathcal{L}}{\partial \varphi_{, \mu}^{I}} t_{a}^{I J} \partial_{\mu} \varphi^{J}, \quad \partial_{\mu} J_{\mu}^{a}=0 \tag{9}
\end{equation*}
$$

Lecture 4, slide 7. Lagrangian symmetries and conserved currents.

Problem 1 starts from the Lagrangian for complex scalar field

$$
\begin{equation*}
\mathcal{L}=\partial_{\mu} \varphi \partial_{\mu} \varphi^{*}-m^{2} \varphi \varphi^{*} \tag{10}
\end{equation*}
$$

where φ and φ^{*} are considered as independent fields, so $\varphi^{I}, I=1,2$ above denotes φ, φ^{*}. This Lagrangian is invariant with respect to

$$
\begin{equation*}
\varphi \Longrightarrow \varphi^{\prime}=e^{i \epsilon} \varphi, \quad \varphi^{*} \Longrightarrow \varphi^{\prime *}=e^{i \epsilon} \varphi^{*} \tag{11}
\end{equation*}
$$

so the following calculation of the conserved current (7) is straightforward.

Problem 1a: Show that the charge Q defined as

$$
\begin{equation*}
Q=\int J_{0} d^{3} x \tag{12}
\end{equation*}
$$

is conserved, $\partial_{0} Q=0$. Calculate Q for the case of the solution of (3) which has the form $\varphi=N e^{-i(k r-\omega t)}$ (plane wave, $\omega^{2}=k^{2}+m^{2}$), where N is the normalisation factor defined by normalisation of the energy of the field. Calculate N. Calculate the value of Q for this case.

Lecture 4, slide 11. $S U(2)$ symmetry and resonance decays. C-parity

(1) Mesons and baryons form isotopic multiplets which are described by irreducible representations of $S U(2)$ group
(2) Infinitesimal operators t_{i} of these representations, $\left[t_{i}, t_{j}\right]=i \epsilon_{i j k} t_{k}$ are called the isotopic spin operators. The operator $t^{2}=t_{1}^{2}+t_{2}^{2}+t_{3}^{2}, t^{2}=I(I+1) E, E$ is unit operator, I is the isotopic spin of the multiplet. Electric charge of a particle component of an isotopic multiplet - is expressed by means of t_{3} and hypercharge Y

$$
\begin{equation*}
Q=t_{3}+\frac{Y}{2} \tag{13}
\end{equation*}
$$

which is known as Gell-Mann - Nishijima formula.

Examples

Proton and neutron form an isotopic doublet $I=1 / 2$ under the name nucleon. In terms of $S U(2)$ they are descibed by covariant isotopic spinor $\phi_{\alpha}=\binom{\phi_{1}}{\phi_{2}}$ defined in the basis $e^{\alpha}\left(e^{\alpha} e^{\beta}=\delta^{\alpha \beta}\right)$

$$
e^{1}=\binom{1}{0}, \quad e^{2}=\binom{0}{1}
$$

basis vectors are transformed as $e^{\alpha^{\prime}}=U_{\beta \alpha} e^{\beta}$, so $\varphi_{\alpha}^{\prime}=U_{\alpha \beta} \varphi_{\beta}$ (fundamental representation, $S U(2)$ transformation is identical to group representation). We can write

$$
p=\binom{1}{0} \otimes \psi(x), \quad n=\binom{0}{1} \otimes \psi(x), \quad \text { or } \quad N=\binom{p}{n}
$$

Lecture 4, slide 11. $S U(2)$ symmetry and resonance decays.

$\pi^{ \pm}$and π^{0} mesons form an isotopic triplet $I=1$ and are described by the second rank isotopic spinor transformed as $U \otimes U^{*}$, with one upper and one lower index. Such spinor is a sum of a spinor with zero trace and Kronecker term δ_{b}^{a} :

$$
\varphi_{b}^{a}=\left(\varphi_{b}^{a}-\frac{1}{2} \delta_{b}^{a} \varphi_{c}^{c}\right)+\frac{1}{2} \delta_{b}^{a} \varphi_{c}^{c},
$$

which form two $S U(2)$ invariant supspaces. Zero trace basis looks as

$$
e_{2}^{1}, \quad \frac{1}{\sqrt{2}}\left(e_{1}^{1}-e_{2}^{2}\right), \quad e_{1}^{2}
$$

and the one-dimensional space basis vector

$$
\frac{1}{\sqrt{2}}\left(e_{1}^{1}+e_{2}^{2}\right)
$$

is ortogonal to the three basis vecor for zero-trace supspace. Matrix form looks as

$$
e_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), e_{0}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right), e_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Lecture 4, slide 11. $S U(2)$ symmetry and resonance decays.

so for the triplet of π-mesons we have the form

$$
\pi_{b}^{a}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} \pi^{0} & \pi^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}
\end{array}\right)
$$

Such form is very convenient to define charge conjugation C, when

$$
\pi^{+} \rightarrow \pi^{-}, \quad \pi^{-} \rightarrow \pi^{+}, \quad \pi^{0} \rightarrow \pi^{0}
$$

which can be written in the matrix form

$$
\pi_{b}^{a} \rightarrow \pi_{a}^{b} \quad \text { or, equivalently } \quad C \pi_{b}^{a} C^{+}=\pi_{a}^{b}
$$

Important $S U(2)$ transformation is the charge symmetry transformation where the matrix is

$$
C S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=i \sigma_{2}
$$

Matrix elements should be invariant under CS. Such transformation for the nucleon isotopic doublet

$$
C S\binom{p}{n}=\binom{n}{-p}
$$

Lecture 4, slide 11. $S U(2)$ symmetry and resonance decays. CS transformation for the pion triplet

$$
C S\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} \pi^{0} & \pi^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}
\end{array}\right) C S^{+}=\left(\begin{array}{cc}
-\frac{1}{\sqrt{2}} \pi^{0} & -\pi^{-} \\
-\pi^{+} & \frac{1}{\sqrt{2}} \pi^{0}
\end{array}\right)
$$

Important point is the relation between components of the isotopic spinor π_{b}^{a} and 3 -vectors. Let us expand π_{b}^{a} in the basis of Pauli matrices

$$
\begin{equation*}
\pi_{a}^{b}=\frac{1}{\sqrt{2}}\left(\tau_{i}\right)_{a}^{b} V_{i} \tag{2A}
\end{equation*}
$$

then it is well-known that $V_{i}=\left(V_{1}, V_{2}, V_{3}\right)$ transform as the 3-vector components which can be easily found:

$$
\begin{equation*}
V_{i}=\frac{1}{\sqrt{2}}\left(\tau_{i}\right)_{b}^{a} \varphi_{a}^{b}=\frac{1}{\sqrt{2}} S p\left(\tau_{i} \varphi\right) \tag{2B}
\end{equation*}
$$

Normalization condition

$$
V_{i} V_{i}^{*}=\left(\varphi^{+}\right)_{b}^{a} \varphi_{a}^{b}=\operatorname{Sp}\left(\varphi^{+} \varphi\right)
$$

Using these formulae a relation between e_{+}, e_{0}, e_{-}and the Cartesian basis e_{x}, e_{y}, e_{z} for 3 -vectors V_{i} can be easily found

$$
e_{+}=\frac{1}{\sqrt{2}}\left(e_{x}+i e_{y}\right), e_{0}=e_{z}, e_{-}=\frac{1}{\sqrt{2}}\left(e_{x}-i e_{y}\right)
$$

Lecture 4, slide 11. $S U(2)$ symmetry and resonance decays.

To write $S U(2)$ invariant Lagrangian for nucleon- π interaction, compose the form $\bar{N}^{a} \pi_{d}^{c} N_{b}$ and take a sum over upper and lower pair of indices, so we have line \times matrix \times column, which is $S U(2)$ scalar. Then the Lagrangian $\left(g_{\pi N N} \sqrt{2}\right.$ - coupling constant)

$$
L_{\pi N N}=g_{\pi N N} \sqrt{2} \bar{N}^{a} \pi_{a}^{b} N_{b}
$$

or in terms of 3 -vector V_{i}

$$
L_{i n t}=g_{\pi N N} \bar{N} \tau_{i} \pi_{i} N
$$

Substituting here matrix expressions we find an explicit form

$$
L_{\pi N N}=g_{\pi N N}\left[\sqrt{2} \bar{p} n \pi^{+}+\sqrt{2} \bar{n} p \pi^{-}+(\bar{p} p-\bar{n} n) \pi^{0}\right]
$$

Less trivial example: decay of $f^{0}(1270)$ meson ($T=0$) to the two π-mesons ($\mathrm{T}=1$), $f^{0} \rightarrow \pi\left(p_{1}\right) \pi\left(p_{2}\right)$, where p_{1} and p_{2} are 4-momenta. $S U(2)$ invariant matrix element of this decay has the form
$M\left(f^{0} \rightarrow \pi \pi\right)=g_{f \pi \pi} f^{0} \pi_{b}^{a} \pi_{a}^{b}=g f^{0}\left[\pi^{+}\left(p_{1}\right) \pi^{-}\left(p_{2}\right)+\pi^{-}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)+\pi^{0}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right]$
so the probability of the channel $\pi^{+} \pi^{-}$is higher by a factor of 2 than of the channel $\pi^{0} \pi^{0}$

$$
\frac{B R\left(f^{0} \rightarrow \pi^{+} \pi^{-}\right)}{B R\left(f^{0} \rightarrow \pi^{0} \pi^{0}\right)}=2
$$

Problem 2. $S U(2)$ symmetry and resonance decays.

Note that $M\left(f^{0} \rightarrow \pi \pi\right)$ is C-invariant only if the C-parity of the f^{0} meson is equal to +1 . Indeed, under C transformation

$$
f^{0} \rightarrow f^{0}, \quad \pi_{b}^{a} \pi_{a}^{b} \Longrightarrow \pi_{a}^{b} \pi_{b}^{a} \quad \text { identical to } \quad \pi_{b}^{a} \pi_{a}^{b}
$$

This matrix elemant respects also Bose statistics, since 2π are in D-state (f^{0} has spatial spin 2 and P parity +1) so the spatial wave function (not written in the formulas above) is symmetric under $p_{1} \rightarrow p_{2}, p_{2} \rightarrow p_{1}$ and also the isotopic matrix element.
Brief denomination of Particle Data: $f^{0}(1270) I^{G}\left(J^{P C}\right)=0^{+} 2^{++}$.
For example, $\varphi(1020)$ meson, $I^{G}\left(J^{P C}\right)=0^{-} 1^{--}$, decay to 2π is described by the matrix element of the same structure, as above. However, under C transformation $\varphi \rightarrow-\varphi$, so conservation of C invariance does not allow $\varphi \rightarrow \pi \pi$.

Problem 2, Lecture 4 Matrix element of $\rho(1450)$ which is isotopic triplet $I=1$, $I^{G}\left(J^{P C}\right)=1^{+} 1^{--}, C \rho_{b}^{a} C^{+}=-\rho_{a}^{b}$ to $\pi \pi$ is described by $S U(2)$ invariant matrix element, invariant under C :

$$
M(\rho \rightarrow \pi \pi)=g \rho_{b}^{a} \pi_{c}^{b} \pi_{a}^{c}
$$

This matrix element defines relations between decay channels.

Problem 2. $S U(2)$ symmetry and resonance decays.

Рис.: see https://pdg.lbl.gov/2020/tables/contents _tables.html

Problem 2. $S U(2)$ symmetry and resonance decays.

Citation: PA. Zyla et al. (Particle Data Group). Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

LIGHT UNFLAVORED MESONS ($S=C=B=0$)

For $I=1(\pi, b, \rho, a): u \bar{d},(u \bar{u}-d \bar{d}) / \sqrt{2}, d \bar{u} ;$
for $I=0\left(\eta, \eta^{\prime}, h, h^{\prime}, \omega, \phi, f, f^{\prime}\right): \quad c_{1}(u \bar{u}+d \bar{d})+c_{2}(s \bar{s})$
$\pi^{ \pm} \quad I^{G}\left(J^{P}\right)=1^{-}\left(0^{-}\right)$

> Mass $m=139.57039 \pm 0.00018 \mathrm{MeV} \quad(\mathrm{S}=1.8)$
> Mean life $\tau=(2.6033 \pm 0.0005) \times 10^{-8} \mathrm{~s} \quad(\mathrm{~S}=1.2)$ $\quad \tau \tau=7.8045 \mathrm{~m}$

${ }_{1}{ }^{(}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)$			
$\begin{aligned} & \text { Mass } m=134.9768 \pm 0.0005 \mathrm{MeV} \quad(S=1.1) \\ & m_{\pi^{ \pm}}-m_{\pi^{0}}=4.5936 \pm 0.0005 \mathrm{MeV} \\ & \text { Mean life } \tau=(8.52 \pm 0.18) \times 10^{-17} \mathrm{~s} \quad(\mathrm{~S}=1.2) \\ & \quad c \tau=25.5 \mathrm{~nm} \end{aligned}$			
$f_{2}(1270)$	$\left.{ }_{1} G_{(J}{ }^{P C}\right)=0^{+}\left(2^{++}\right)$		
Mass $m=1275.5 \pm 0.8 \mathrm{MeV}$ Full width $\Gamma=186.7_{-2.5}^{+2.2} \mathrm{MeV} \quad(\mathrm{S}=1.4)$			
$f^{\text {f }}$ (1270) DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)	Scale factor/ Confidence level	$\begin{gathered} p \\ \left(\mathrm{MeV}^{p} / \mathrm{c}\right) \end{gathered}$
$\pi \pi$	$\left(84.2{ }_{-0.9}^{+2.9}\right)$	$\mathrm{s}=1.1$	623

PDG tables - G parity

After C transformation the neutral particles are transformed into themselves, their wave function is not changed (C parity +1) or changes sign (C parity -1). Charged particles are transformed to their antiparticles, so they do not have C-parity. We can generalize the notion of C-parity for (anti)particles from the same isotopic multiplet, combining C transformation and $C S$ transformation, so $G=C \times C S$. For example, C-transformation for π triplet

$$
\pi^{-} \rightarrow \pi^{+}, \quad \pi^{+} \rightarrow \pi^{-}, \quad \pi^{0} \rightarrow \pi^{0}
$$

Under $C S$ transformation described above

$$
\pi^{-} \rightarrow-\pi^{+}, \quad \pi^{+} \rightarrow-\pi^{-}, \quad \pi^{0} \rightarrow-\pi^{0}
$$

Combining C and $C S$, we have

$$
\pi^{-} \rightarrow-\pi^{-}, \quad \pi^{+} \rightarrow-\pi^{+}, \quad \pi^{0} \rightarrow-\pi^{0}
$$

so G-parity of the pion triplet is -1 , or pions are eigenstates of the $C \times C S$ with the eigenvalue -1 . G-parity conservation does not allow, for example, $\rho \rightarrow 3 \pi, \phi \rightarrow 2 \pi$ and so on. The value of G is indicated in the standard PDG denomination $I^{G}\left(J^{P C}\right)$.

