

Electron-positron annihilation
Lesya Shchutska
EPFL

QED Calculations

How to calculate a cross section using QED (e.g. $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$):

1) draw all possible Feynman Diagrams

- for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$there is just one lowest order diagram: $M \propto e^{2} \propto \alpha_{\text {em }}$

- plus many second order diagrams: $M \propto e^{4} \propto \alpha_{e m}^{2}$

(2)for each diagram calculate the matrix element using Feynman rules

QED Calculations

(3) sum the individual matrix elements (i.e. sum the amplitudes):

$$
M_{f i}=M_{1}+M_{2}+M_{3}+\ldots
$$

note: summing amplitudes \Rightarrow different diagrams can interfere either positively or negatively!
and then square

$$
\left|M_{f i}\right|^{2}=\left(M_{1}+M_{2}+M_{3}+\ldots\right)\left(M_{1}^{*}+M_{2}^{*}+M_{3}^{*}+\ldots\right)
$$

\Rightarrow this gives the full perturbation expansion in $\alpha_{e m}$

- for QED $\alpha_{e m} \sim 1 / 137$ the lowest order diagram dominates and for most purposes it is sufficient to neglect higher order diagrams:

QED Calculations

4 calculate decay rate/cross section using previous formulae:

- for a decay

$$
\begin{equation*}
\Gamma=\frac{p^{*}}{32 \pi^{2} m_{a}^{2}} \int\left|M_{f i}^{2}\right| \mathrm{d} \Omega \tag{1}
\end{equation*}
$$

- for scattering in the center-of-mass frame

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega^{*}}=\frac{1}{64 \pi^{2} s} \frac{\left|\vec{p}_{f}^{*}\right|}{\left|\vec{p}_{i}^{*}\right|}\left|M_{f i}\right|^{2} \tag{2}
\end{equation*}
$$

- for scattering in lab. frame (neglecting mass of scattered particle)

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2}}\left(\frac{E_{3}}{M E_{1}}\right)^{2}\left|M_{f i}\right|^{2} \tag{3}
\end{equation*}
$$

Electron-positron annihilation

Consider the process: $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$:

- work in C.o.M. frame (this is appropriate for most $e^{+} e^{-}$ colliders):
$p_{1}=(E, 0,0, p), p_{2}=(E, 0,0,-p), p_{3}=\left(E, \vec{p}_{f}\right)$,
$p_{4}=\left(E,-\vec{p}_{f}\right)$

- only consider the lowest order Feynman diagram; from Feynman rules:

$$
\begin{equation*}
-i M=\left[\bar{v}\left(p_{2}\right) i e \gamma^{\mu} u\left(p_{1}\right)\right] \frac{-i g_{\mu \nu}}{q^{2}}\left[\bar{u}\left(p_{3}\right) i e \gamma^{\nu} v\left(p_{4}\right)\right] \tag{4}
\end{equation*}
$$

- incoming anti-particle \bar{v}
- incoming particle u
- adjoint spinor written first

Electron-positron annihilation

- in the C.o.M. frame:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2} s} \frac{\vec{p}_{f}}{\vec{p}_{i}}\left|M_{f i}\right|^{2} \text { with } s=\left(p_{1}+p_{2}\right)^{2}=(E+E)^{2}=4 E^{2} \tag{5}
\end{equation*}
$$

- here $q^{2}=\left(p_{1}+p_{2}\right)^{2}=s$ and matrix element

$$
\begin{equation*}
-i M=\left[\bar{v}\left(p_{2}\right) i e \gamma^{\mu} u\left(p_{1}\right)\right] \frac{-i g_{\mu \nu}}{q^{2}}\left[\bar{u}\left(p_{3}\right) i e \gamma^{\nu} v\left(p_{4}\right)\right] \tag{6}
\end{equation*}
$$

becomes

$$
\begin{equation*}
M=-\frac{e^{2}}{s} g_{\mu \nu}\left[\bar{v}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right)\right]\left[\bar{u}\left(p_{3}\right) \gamma^{\nu} v\left(p_{4}\right)\right] \tag{7}
\end{equation*}
$$

Electron and muon currents

- previously we introduced the four-vector current:

$$
\begin{equation*}
j^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi \tag{8}
\end{equation*}
$$

which has same form as the two terms in [] in the matrix element of Eq. 7

- the matrix element can be written in terms of the e and μ currents:

$$
\begin{gather*}
\left(j_{e}\right)^{\mu}=\bar{v}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right) \text { and }\left(j_{\mu}\right)^{\nu}=\bar{u}\left(p_{3}\right) \gamma^{\nu} v\left(p_{4}\right) \\
\Rightarrow M=-\frac{e^{2}}{s} g_{\mu \nu}\left(j_{e}\right)^{\mu}\left(j_{\mu}\right)^{\nu} \tag{10}\\
M=-\frac{e^{2}}{s} j_{e} \cdot j_{\mu} \tag{11}
\end{gather*}
$$

matrix element is a four-vector scalar product \Rightarrow Lorentz Invariant

Spin in $e^{+} e^{-}$annihilation

- in general, the electron and positron are not polarized, i.e. there is equal numbers of positive and negative helicity states
- there are four possible combinations of spins in the initial state:

- similarly there are four possible helicity combinations in the final state
- in total there are $\mathbf{1 6}$ combinations, e.g. RL \rightarrow RR, RL \rightarrow RL, ...

Spin in $e^{+} e^{-}$annihilation

- to account for these states we need to sum over all $\mathbf{1 6}$ possible helicity combinations and then average over the number of initial helicity states:

$$
\begin{equation*}
\left.\left.\langle | M\right|^{2}\right\rangle=\frac{1}{4} \sum_{\text {spins }}\left|M_{i}\right|^{2}=\frac{1}{4}\left(\left|M_{L L \rightarrow L L}\right|^{2}+\left|M_{L L \rightarrow L R}\right|^{2}+\ldots\right) \tag{12}
\end{equation*}
$$

- i.e. need to evaluate $M=-\frac{e^{2}}{s} j_{e} \cdot j_{\mu}$ for all 16 helicity combinations
- fortunately, in the limit $E \gg m_{\mu}$ only 4 helicity combinations give non-zero matrix elements - this is an important feature of QED/QCD

Spin in $e^{+} e^{-}$annihilation

- in the C.o.M. frame in the limit $E \gg m$:

$$
\begin{aligned}
& p_{1}=(E, 0,0, E), p_{2}=(E, 0,0,-E), \\
& p_{3}=(E, E \sin \theta, 0, E \cos \theta), \\
& p_{4}=(E,-E \sin \theta, 0,-E \cos \theta)
\end{aligned}
$$

- left- and right-handed helicity spinors for particles and antiparticles:

$$
u_{\uparrow}=N\left(\begin{array}{c}
c \tag{13}\\
e^{i \phi} s \\
\frac{|\vec{p}|}{E+m} c \\
\frac{|\vec{p}|}{E+m} e^{i \phi} s
\end{array}\right) ; u_{\downarrow}=N\left(\begin{array}{c}
-s \\
e^{i \phi} c \\
\frac{|\vec{p}|}{E+m} s \\
-\frac{|\vec{p}|}{E+m} e^{i \phi} c
\end{array}\right) ; v_{\uparrow}=N\left(\begin{array}{c}
\frac{|\vec{p}|}{E+m} s \\
-\frac{|\vec{p}|}{E+m} e^{i \phi} c \\
-s \\
e^{i \phi} c
\end{array}\right) ; v_{\downarrow}=N\left(\begin{array}{c}
\frac{|\vec{p}|}{E+m} c \\
\frac{|\overrightarrow{\mid}|}{E+m} e^{i \phi} s \\
c \\
e^{i \phi} s
\end{array}\right)
$$

where $s=\sin \frac{\theta}{2}, c=\cos \frac{\theta}{2}$ and $N=\sqrt{E+m}$

Spin in $e^{+} e^{-}$annihilation

- in the limit $E \gg m$ these become:

$$
u_{\uparrow}=\sqrt{E}\left(\begin{array}{c}
c \tag{14}\\
s e^{i \phi} \\
c \\
s e^{i \phi}
\end{array}\right) ; \quad u_{\downarrow}=\sqrt{E}\left(\begin{array}{c}
-s \\
c e^{i \phi} \\
s \\
-c e^{i \phi}
\end{array}\right) ; \quad v_{\uparrow}=\sqrt{E}\left(\begin{array}{c}
s \\
-c e^{i \phi} \\
-s \\
c e^{i \phi}
\end{array}\right) ; \quad v_{\uparrow}=\sqrt{E}\left(\begin{array}{c}
c \\
s e^{i \phi} \\
c \\
s e^{i \phi}
\end{array}\right) ;
$$

where $s=\sin \frac{\theta}{2}, c=\cos \frac{\theta}{2}$

Spin in $e^{+} e^{-}$annihilation

- the initial-state e^{-}can either be in a left- or right-handed helicity state:

$$
u_{\uparrow}\left(p_{1}\right)=\sqrt{E}\left(\begin{array}{l}
1 \tag{15}\\
0 \\
1 \\
0
\end{array}\right) ; \quad u_{\downarrow}\left(p_{1}\right)=\sqrt{E}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right) ;
$$

- for the initial state positron $(\theta=\pi)$ can have either:

$$
v_{\uparrow}\left(p_{2}\right)=\sqrt{E}\left(\begin{array}{c}
1 \tag{16}\\
0 \\
-1 \\
0
\end{array}\right) ; \quad v_{\downarrow}\left(p_{2}\right)=\sqrt{E}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)
$$

Spin in $e^{+} e^{-}$annihilation

- similarly for the final state μ^{-}with polar angle θ and choosing $\phi=0$:

$$
u_{\uparrow}\left(p_{3}\right)=\sqrt{E}\left(\begin{array}{l}
c \tag{17}\\
s \\
c \\
s
\end{array}\right) ; \quad u_{\downarrow}\left(p_{3}\right)=\sqrt{E}\left(\begin{array}{c}
-s \\
c \\
s \\
-c
\end{array}\right) ; \quad(17) \quad \underset{\theta=\pi}{\mu^{+}} \underset{\pi=\theta}{\boldsymbol{\mu} \boldsymbol{\mu}^{-}}
$$

Spin in $e^{+} e^{-}$annihilation

- and for the final state μ^{+}replacing $\theta \rightarrow \pi-\theta, \phi \rightarrow \pi$ obtain:

$$
\begin{array}{r}
v_{\uparrow}\left(p_{4}\right)=\sqrt{E}\left(\begin{array}{c}
c \\
s \\
-c \\
s
\end{array}\right) ; \quad v_{\downarrow}\left(p_{4}\right)=\sqrt{E}\left(\begin{array}{c}
s \\
-c \\
s \\
-c
\end{array}\right) ; \tag{18}\\
\text { using } \sin \left(\frac{\pi-\theta}{2}\right)=\cos \frac{\theta}{2}, \cos \left(\frac{\pi-\theta}{2}\right)=\sin \frac{\theta}{2}, e^{-i \pi}=-1
\end{array}
$$

- wish to calculate the matrix element $M=-\frac{e^{2}}{s} j_{e} \cdot j_{\mu}$
- first consider the muon current j_{μ} for 4 possible helicity combinations:

The muon current

- want to evaluate $\left(j_{\mu}\right)^{\nu}=\bar{u}\left(p_{3}\right) \gamma^{\nu} v\left(p_{4}\right)$ for all helicity combinations
- for arbitrary spinors ψ, ϕ it is straightforward to show that the components of $\bar{\psi} \gamma^{\mu} \phi$:

$$
\begin{align*}
& \bar{\psi} \gamma^{0} \phi=\psi^{\dagger} \gamma^{0} \gamma^{0} \phi \tag{19}\\
& \bar{\psi} \gamma^{1} \phi=\psi_{1}^{*} \phi_{1}+\psi_{2}^{*} \gamma_{2} \gamma^{1} \phi=\psi_{3}^{*} \phi_{3}+\psi_{4}^{*} \phi_{4}+\psi_{2}^{*} \phi_{3}+\psi_{3}^{*} \phi_{2}+\psi_{4}^{*} \phi_{1} \tag{20}\\
& \bar{\psi} \gamma^{2} \phi=\psi^{\dagger} \gamma^{0} \gamma^{2} \phi=-i\left(\psi_{1}^{*} \phi_{4}-\psi_{2}^{*} \phi_{3}+\psi_{3}^{*} \phi_{2}-\psi_{4}^{*} \phi_{1}\right) \tag{21}\\
& \bar{\psi} \gamma^{3} \phi=\psi^{\dagger} \gamma^{0} \gamma^{3} \phi=\psi_{1}^{*} \phi_{3}-\psi_{2}^{*} \phi_{4}+\psi_{3}^{*} \phi_{1}-\psi_{4}^{*} \phi_{2} \tag{22}
\end{align*}
$$

The muon current

- consider the $\mu_{R}^{-} \mu_{L}^{+}$combination using $\psi=u_{\uparrow}, \phi=v_{\downarrow}$ with

$$
v_{\downarrow}=\sqrt{E}\left(\begin{array}{c}
s \\
-c \\
s \\
-c
\end{array}\right) ; u_{\uparrow}=\sqrt{E}\left(\begin{array}{l}
c \\
s \\
c \\
s
\end{array}\right):
$$

$$
\begin{align*}
& \bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{0} v_{\downarrow}\left(p_{4}\right)=E(c s-s c+c s-s c)=0 \tag{23}\\
& \bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{1} v_{\downarrow}\left(p_{4}\right)=E\left(-c^{2}+s^{2}-c^{2}+s^{2}\right)=2 E\left(s^{2}-c^{2}\right)=-2 E \cos \theta \tag{24}\\
& \bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{2} v_{\downarrow}\left(p_{4}\right)=-i E\left(-c^{2}-s^{2}-c^{2}-s^{2}\right)=2 i E \tag{25}\\
& \bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{3} v_{\downarrow}\left(p_{4}\right)=E(c s+s c+c s+s c)=4 E s c=2 E \sin \theta \tag{26}
\end{align*}
$$

The muon current

- hence the four-vector muon current for the RL combination is:

$$
\begin{equation*}
\bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{\nu} v_{\downarrow}\left(p_{4}\right)=2 E(0,-\cos \theta, i, \sin \theta) \tag{27}
\end{equation*}
$$

- the results for the four helicity combinations are:

$$
\begin{array}{lrl}
\bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{\nu} v_{\downarrow}\left(p_{4}\right) & =2 E(0,-\cos \theta, i, \sin \theta) & \mathrm{RL} \\
\bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{\nu} v_{\uparrow}\left(p_{4}\right)=(0,0,0,0) & \mathrm{RR} \\
\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\nu} v_{\downarrow}\left(p_{4}\right)=(0,0,0,0) & \mathrm{LL} \\
\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\nu} v_{\uparrow}\left(p_{4}\right)=2 E(0,-\cos \theta,-i, \sin \theta) & \mathrm{LR} \tag{31}
\end{array}
$$

The muon current

In the limit $E \gg m$ only two helicity combinations are non-zero!

- this is an important feature of QED. It applies equally to QCD.
- in the Weak interaction only one helicity combination contributes.
- the origin of this will be discussed in the last part of this lecture
- but as a consequence of the 16 possible helicity combinations only four given non-zero matrix elements

The muon current

- for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$now only have to consider four matrix elements:

The muon current

- previously we derived the muon currents for the allowed helicities:

- now need to consider the electron current

The electron current

- the incoming electron and positron spinors (L and R helicities) are:

$$
u_{\uparrow}=\sqrt{E}\left(\begin{array}{l}
1 \tag{34}\\
0 \\
1 \\
0
\end{array}\right) ; u_{\downarrow}=\sqrt{E}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right) ; v_{\uparrow}=\sqrt{E}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) ; v_{\downarrow}=\sqrt{E}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right) ;
$$

- the electron current can either be obtained from Eq. 19 or directly from the expressions for the muon current:

$$
\begin{equation*}
\left(j_{e}\right)^{\mu}=\bar{v}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right) \quad\left(j_{\mu}\right)^{\mu}=\bar{u}\left(p_{3}\right) \gamma^{\mu} v\left(p_{4}\right) \tag{35}
\end{equation*}
$$

- taking the Hermitian conjugate of the muon current gives:

MISIS

$$
\begin{array}{rlrl}
{\left[\bar{u}\left(p_{3}\right) \gamma^{\mu} v\left(p_{4}\right)\right]^{\dagger}} & =\left[u\left(p_{3}\right)^{\dagger} \gamma^{0} \gamma^{\mu} v\left(p_{4}\right)\right]^{\dagger} & \\
& =v\left(p_{4}\right)^{\dagger} \gamma^{\mu \dagger} \gamma^{0 \dagger} u\left(p_{3}\right) & (A B)^{\dagger}=B^{\dagger} A^{\dagger} \\
& =v\left(p_{4}\right)^{\dagger} \gamma^{\mu \dagger} \gamma^{0} u\left(p_{3}\right) & \gamma^{0 \dagger}=\gamma^{0} \\
& =v\left(p_{4}\right)^{\dagger} \gamma^{0} \gamma^{\mu} u\left(p_{3}\right) & \gamma^{\mu \dagger} \gamma^{0}=\gamma^{0} \gamma^{\mu} \\
& =\bar{v}\left(p_{4}\right) \gamma^{\mu} u\left(p_{3}\right) & & \tag{40}\\
\text { New Technologies for New Physics }
\end{array}
$$

The electron current

- taking the complex conjugate of the muon currents for the two non-zero helicity configurations:

$$
\begin{align*}
& \bar{v}_{\downarrow}\left(p_{4}\right) \gamma^{\mu} u_{\uparrow}\left(p_{3}\right)=\left[\bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{\nu} v_{\downarrow}\left(p_{4}\right)\right]^{*}=2 E(0,-\cos \theta,-i, \sin \theta) \tag{41}\\
& \bar{v}_{\uparrow}\left(p_{4}\right) \gamma^{\mu} u_{\downarrow}\left(p_{3}\right)=\left[\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\nu} v_{\uparrow}\left(p_{4}\right)\right]^{*}=2 E(0,-\cos \theta, i, \sin \theta) \tag{42}
\end{align*}
$$

To obtain the electron currents we simply need to set $\theta=0$:

$$
\begin{array}{lll}
e_{R}^{-} e_{L}^{+}: & \bar{v}_{\downarrow}\left(p_{2}\right) \gamma^{\nu} u_{\uparrow}\left(p_{1}\right) & =2 E(0,-1,-i, 0) \\
e_{L}^{-} e_{R}^{+}: & \bar{v}_{\uparrow}\left(p_{2}\right) \gamma^{\nu} u_{\downarrow}\left(p_{1}\right) & =2 E(0,-1, i, 0)
\end{array}
$$

Matrix element calculation

- we can now calculate $M=-\frac{e^{2}}{s} j_{e} \cdot j_{\mu}$ for the four possible helicity combinations
- e.g. we will do it for $e_{R}^{-} e_{L}^{+} \rightarrow \mu_{R}^{-} \mu_{L}^{+}$which we will denote $M_{R R}$:

here the first subscript refers to the helicity of the e^{-}and the second to the helicity of the μ^{-}. Don't need to specify other helicities due to "helicity conservation", only certain chiral combinations are non-zero
- using:

$$
\begin{array}{rlr}
e_{R}^{-} e_{L}^{+}:\left(j_{e}\right)^{\mu}=\bar{v}_{\downarrow}\left(p_{2}\right) \gamma^{\nu} u_{\uparrow}\left(p_{1}\right) & =2 E(0,-1,-i, 0) \\
\mu_{R}^{-} \mu_{L}^{+}: & \left(j_{\mu}\right)^{\nu}=\bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{\nu} v_{\downarrow}\left(p_{4}\right) & =2 E(0,-\cos \theta, i, \sin \theta) \tag{46}
\end{array}
$$

- gives:

$$
\begin{align*}
M_{R R} & =-\frac{e^{2}}{s}[2 E(0,-1,-i, 0)] \cdot[2 E(0,-\cos \theta, i, \sin \theta)] \tag{47}\\
& =-e^{2}(1+\cos \theta)=-4 \pi \alpha(1+\cos \theta), \text { where } \alpha=e^{2} / 4 \pi \approx 1 / 137 \tag{48}
\end{align*}
$$

Matrix element calculation
Similarly:

$$
\begin{align*}
\left|M_{R R}\right|^{2} & =\left|M_{L L}\right|^{2}=(4 \pi \alpha)^{2}(1+\cos \theta)^{2} \tag{49}\\
\left|M_{R L}\right|^{2} & =\left|M_{L R}\right|^{2}=(4 \pi \alpha)^{2}(1-\cos \theta)^{2} \tag{50}
\end{align*}
$$

assuming that the incoming electrons and positrons are unpolarized, all 4 possible initial helicity states are equally likely

Differential cross section

- the cross section is obtained by averaging over the initial spin states and summing over the final spin states:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{4} \times \frac{1}{64 \pi^{2} s}\left(\left|M_{R R}\right|^{2}+\left|M_{R L}\right|^{2}+\left|M_{L R}\right|^{2}+\left|M_{L L}\right|^{2}\right) \tag{51}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{(4 \pi \alpha)^{2}}{256 \pi^{2} s}\left(2(1+\cos \theta)^{2}+2(1-\cos \theta)^{2}\right) \tag{52}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\alpha^{2}}{s}\left(1+\cos ^{2} \theta\right) \tag{53}
\end{equation*}
$$

Differential cross section: measurement

Example: $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$at $\sqrt{s}=29 \mathrm{GeV}$
Mark II Expt., M.E.Levi et al., Phys. Rev. Lett. 51 (1983) 1941

- - - pure QED, $\mathcal{O}\left(\alpha^{3}\right)$
—— QED +Z contribution
Angular distribution becomes slightly asymmetric in higher order QED or when Z contribution is included

Total cross section: measurement

- the total cross section is obtained by integrating over θ, ϕ using:

$$
\begin{equation*}
\int\left(1+\cos ^{2} \theta\right) d \Omega=2 \pi \int_{-1}^{+1}\left(1+\cos ^{2} \theta\right) d \cos \theta=\frac{16 \pi}{3} \tag{54}
\end{equation*}
$$

giving the QED total cross section for the process $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$

$$
\begin{equation*}
\sigma=\frac{4 \pi \alpha^{2}}{3 s} \tag{55}
\end{equation*}
$$

- lowest order cross section calculation provides a good description of the data!
- this is an impressive result: from first principles we have arrived at an expression for the electron-positron annihilation cross section which is good to 1%

Spin considerations $(E \gg m)$

- the angular dependence of the QED electron-positron matrix elements can be understood in terms of angular momentum
- because of the allowed helicity states, the electron and positron interact in a spin state with $S_{z}= \pm 1$, i.e. in a total spin 1 state aligned along the z axis: $|1,+1\rangle$ or $|1,-1\rangle$
- similarly, the muon and anti-muon are produced in a total spin 1 state aligned along an axis with polar angle θ, e.g.

$\Rightarrow M_{R R} \propto\langle\psi \mid 1,1\rangle$ where ψ is the spin state, $|1,1\rangle_{\theta}$ of the $\mu^{+} \mu^{-}$

Spin considerations $(E \gg m)$

- to evaluate this need to express $|1,1\rangle_{\theta}$ in terms of eigenstates of S_{z}
- it is possible to show that:

$$
\begin{equation*}
|1,1\rangle_{\theta}=\frac{1}{2}(1-\cos \theta)|1,-1\rangle+\frac{1}{\sqrt{2}} \sin \theta|1,0\rangle+\frac{1}{2}(1+\cos \theta)|1,+1\rangle \tag{56}
\end{equation*}
$$

Spin considerations ($E \gg m$)

- using the wave-function for a spin 1 state along an axis at angle θ can immediately understand the angular dependence:

$$
\left|M_{\text {NLe }}\right|^{2} \propto \left\lvert\,\left.\langle\psi|\langle 1,-1\rangle\right|^{2} \underset{\text { Basics }}{=} \frac{1}{4}(1-\cos \text { Particle Physics } \theta)^{2}\right. \text { Track 1, Lecture } 3
$$

Lorentz Invariant form of Matrix Element

- note that the spin-averaged ME derived above is written in terms of the muon angle in the C.o.M. frame:

$$
\begin{align*}
\langle | M_{f i}^{2}| \rangle & =\frac{1}{4} \times\left(\left|M_{R R}\right|^{2}+\left|M_{R L}\right|^{2}+\left|M_{L R}\right|^{2}+\left|M_{L L}\right|^{2}\right) \tag{57}\\
& =\frac{1}{4} e^{4}\left(2(1+\cos \theta)^{2}+2(1-\cos \theta)^{2}\right) \tag{58}\\
& =e^{4}\left(1+\cos ^{2} \theta\right) \tag{59}
\end{align*}
$$

- the matrix element is Lorentz Invariant (scalar product of 4-vector currents) and it is desirable to write it in a frame-independent form, i.e. express in terms of Lorentz-invariant 4 -vector scalar products
- in the C.o.M. $p_{1}=(E, 0,0, E), p_{2}=(E, 0,0,-E), p_{3}=(E, E \sin \theta, 0, E \cos \theta)$, $p_{4}=(E,-E \sin \theta, 0,-E \cos \theta)$ giving $p_{1} \cdot p_{2}=2 E^{2}, p_{1} \cdot p_{3}=E^{2}(1-\cos \theta)$, $p_{1} \cdot p_{4}=E^{2}(1+\cos \theta)$
- hence:

$$
\begin{equation*}
\left.\left.\langle | M_{f i}\right|^{2}\right\rangle=2 e^{4} \frac{\left(p_{1} \cdot p_{3}\right)^{2}+\left(p_{1} \cdot p_{4}\right)^{2}}{\left(p_{1} \cdot p_{2}\right)^{2}} \equiv 2 e^{4}\left(\frac{t^{2}+u^{2}}{s^{2}}\right) \tag{60}
\end{equation*}
$$

Chirality

- the helicity eigenstates for a particle/anti-particle for $E \gg m$ are:

$$
u_{\uparrow}=\sqrt{E}\left(\begin{array}{c}
c \tag{61}\\
s e^{i \phi} \\
c \\
s e^{i \phi}
\end{array}\right) ; u_{\downarrow}=\sqrt{E}\left(\begin{array}{c}
-s \\
c e^{i \phi} \\
s \\
-c e^{i \phi}
\end{array}\right) ; v_{\uparrow}=\sqrt{E}\left(\begin{array}{c}
s \\
-c e^{i \phi} \\
-s \\
c e^{i \phi}
\end{array}\right) ; v_{\uparrow}=\sqrt{E}\left(\begin{array}{c}
c \\
s e^{i \phi} \\
c \\
s e^{i \phi}
\end{array}\right)
$$

where $s=\sin \frac{\theta}{2}, c=\cos \frac{\theta}{2}$

- define the matrix:

$$
\gamma^{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{62}\\
1 & 0 & 0 \\
0 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

- in the limit $E \gg m$ the helicity states are also eigenstates of γ^{5} :
$\gamma^{5} u_{\uparrow}=+u_{\uparrow} ; \quad \gamma^{5} u_{\downarrow}=-u_{\downarrow} ; \quad \gamma^{5} v_{\uparrow}=-v_{\uparrow} ; \quad \gamma^{5} v_{\downarrow}=+v_{\downarrow} ;$

Chirality

- in general, define eigenstates of γ^{5} as left- and right-handed chiral states: u_{R}, u_{L}, v_{R}, v_{L}, i.e.:

$$
\begin{equation*}
\gamma^{5} u_{R}=+u_{R} ; \quad \gamma^{5} u_{L}=-u_{L} ; \quad \gamma^{5} v_{R}=-v_{R} ; \quad \gamma^{5} v_{L}=+v_{L} ; \tag{64}
\end{equation*}
$$

- in the limit $E \gg m$ (and only in this limit):

$$
\begin{equation*}
u_{R} \equiv u_{\uparrow} ; \quad u_{L} \equiv u_{\downarrow} ; \quad v_{R} \equiv v_{\uparrow} ; \quad v_{L} \equiv v_{\downarrow} \tag{65}
\end{equation*}
$$

- this is a subtle but important point: in general the helicity and chiral eigenstates are not the same. It is only in the ultra-relativistic limit that the chiral eigenstates correspond to the helicity eigenstates.
- chirality is an important concept in the structure of QED, and any interaction of the form $\bar{u} \gamma^{\nu} u$
- in general, the eigenstates of the chirality operator are:

$$
\begin{equation*}
\gamma^{5} u_{R}=+u_{R} ; \quad \gamma^{5} u_{L}=-u_{L} ; \quad \gamma^{5} v_{R}=-v_{R} ; \quad \gamma^{5} v_{L}=+v_{L} ; \tag{66}
\end{equation*}
$$

- define the projection operators:

$$
\begin{equation*}
\mathrm{P}_{R}=\frac{1}{2}\left(1+\gamma^{5}\right) ; \quad P_{L}=\frac{1}{2}\left(1-\gamma^{5}\right) \tag{67}
\end{equation*}
$$

- the projection operators project out the chiral eigenstates:

$$
\begin{align*}
& P_{R} u_{R}=u_{R} ; \quad P_{R} u_{L}=0 ; \quad P_{L} u_{R}=0 ; \quad P_{L} u_{L}=u_{L} ; \tag{68}\\
& P_{R} v_{R}=0 ; \quad P_{R} v_{L}=v_{L} ; \quad P_{L} v_{R}=v_{R} ; \quad P_{L} v_{L}=0 \tag{69}
\end{align*}
$$

- note P_{R} projects out right-handed particle states and left-handed anti-particle states
- we can then write any spinor in terms of it left and right-handed chiral components:

$$
\begin{equation*}
\psi=\psi_{R}+\psi_{L}=\frac{1}{2}\left(1+\gamma^{5}\right) \psi+\frac{1}{2}\left(1-\gamma^{5}\right) \psi \tag{70}
\end{equation*}
$$

Chirality in QED

- in QED the basic interaction between a fermion and photon is:

$$
\begin{equation*}
i e \bar{\psi} \gamma^{\mu} \phi \tag{71}
\end{equation*}
$$

- can decompose the spinors in terms of Left and Right-handed chiral components:

$$
\begin{align*}
i e \bar{\psi} \gamma^{\mu} \phi & =i e\left(\bar{\psi}_{L}+\bar{\psi}_{R}\right) \gamma^{\mu}\left(\phi_{L}+\phi_{R}\right) \tag{72}\\
& =i e\left(\bar{\psi}_{R} \gamma^{\mu} \phi_{R}+\bar{\psi}_{R} \gamma^{\mu} \phi_{L}+\bar{\psi}_{L} \gamma^{\mu} \phi_{R}+\bar{\psi}_{L} \gamma^{\mu} \phi_{L}\right) \tag{73}
\end{align*}
$$

- using the properties of γ^{5} :

$$
\begin{equation*}
\left(\gamma^{5}\right)^{2}=1 ; \quad \gamma^{5 \dagger}=\gamma^{5} ; \quad \gamma^{5} \gamma^{\mu}=-\gamma^{\mu} \gamma^{5} \tag{74}
\end{equation*}
$$

it is straightforward to show that

$$
\begin{equation*}
\bar{\psi}_{R} \gamma^{\mu} \phi_{L}=0 ; \quad \bar{\psi}_{L} \gamma^{\mu} \phi_{R}=0 \tag{75}
\end{equation*}
$$

Whence only certain combinations of chiral eigenstates contribute to the interaction. MISIS This statement is always true ${ }_{\text {hysics }}$

Chirality in QED

- for $E \gg m$ the chiral and helicity eigenstates are equivalent
- hence for $E \gg m$ only certain helicity combinations contribute to the QED vertex!
- this is why previously we found that for two of the four helicity combinations for the muon current were zero

Allowed QED Helicity Combinations

- in the ultra-relativistic limit the helicity eigenstates \equiv chiral eigenstates
- in this limit, the only non-zero helicity combinations in QED are:

Annihilation:

Summary

- in the center-of-mass frame the $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$differential cross section is:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\alpha^{2}}{4 \mathrm{~s}}\left(1+\cos ^{2} \theta\right) \tag{76}
\end{equation*}
$$

note: neglected masses of the muons, i.e. assumed $E \gg m_{\mu}$

- in QED only certain combinations of left- and right-handed chiral states give non-zero matrix elements
- chiral states defined by chiral projection operators:

$$
\begin{equation*}
P_{R}=\frac{1}{2}\left(1+\gamma^{5}\right) ; \quad P_{L}=\frac{1}{2}\left(1-\gamma^{5}\right) \tag{77}
\end{equation*}
$$

Summary

- in limit $E \gg m$ the chiral eigenstates correspond to the helicity eigenstates and only certain helicity eigenstates give non-zero ME:

