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QED Calculations
How to calculate a cross section using QED (e.g. e+e− → µ+µ−):

1 draw all possible Feynman Diagrams
• for e+e− → µ+µ− there is just one lowest order diagram: M ∝ e2 ∝ αem

γ

e
+

e
−

µ
+

µ
−

• plus many second order diagrams: M ∝ e4 ∝ α2
em

2 for each diagram calculate the matrix element using Feynman rules
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QED Calculations
3 sum the individual matrix elements (i.e. sum the amplitudes):

Mfi = M1 + M2 + M3 + . . .

note: summing amplitudes =⇒ different diagrams can interfere either positively or
negatively!
and then square

|Mfi |2 = (M1 + M2 + M3 + . . . )(M∗
1 + M∗

2 + M∗
3 + . . . )

=⇒ this gives the full perturbation expansion in αem
• for QED αem ∼ 1/137 the lowest order diagram dominates and for most

purposes it is sufficient to neglect higher order diagrams:
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QED Calculations

4 calculate decay rate/cross section using previous formulae:
• for a decay

Γ =
p∗

32π2m2
a

∫ ∣∣M2
fi
∣∣dΩ (1)

• for scattering in the center-of-mass frame

dσ
dΩ∗ =

1

64π2s
|⃗p∗

f |
|⃗p∗

i |
|Mfi |2 (2)

• for scattering in lab. frame (neglecting mass of scattered particle)

dσ
dΩ

=
1

64π2

(
E3

ME1

)2

|Mfi |2 (3)
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Electron‐positron annihilation

Consider the process: e+e− → µ+µ−:

• work in C.o.M. frame (this is appropriate for most e+e−
colliders):
p1 = (E , 0, 0, p), p2 = (E , 0, 0,−p), p3 = (E , p⃗f ),
p4 = (E ,−p⃗f )

• only consider the lowest order Feynman diagram; from Feynman rules:
−iM = [v̄(p2)ieγµu(p1)]

−igµν
q2

[ū(p3)ieγνv(p4)] (4)

• incoming anti-particle v̄
• incoming particle u
• adjoint spinor written first

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 5



Electron‐positron annihilation

• in the C.o.M. frame:

dσ
dΩ

=
1

64π2s
p⃗f
p⃗i
|Mfi |2 with s = (p1 + p2)2 = (E + E )2 = 4E 2 (5)

• here q2 = (p1 + p2)2 = s and matrix element

−iM = [v̄(p2)ieγµu(p1)]
−igµν

q2
[ū(p3)ieγνv(p4)] (6)

becomes
M = −e2

s gµν [v̄(p2)γµu(p1)] [ū(p3)γνv(p4)] (7)
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Electron and muon currents
• previously we introduced the four-vector current:

jµ = ΨγµΨ (8)

which has same form as the two terms in [] in the matrix element of Eq. 7
• the matrix element can be written in terms of the e and µ currents:

(je)µ = v̄(p2)γµu(p1) and (jµ)ν = ū(p3)γνv(p4) (9)

=⇒ M = −e2
s gµν(je)µ(jµ)ν (10)

M = -e2
s je · jµ (11)

• matrix element is a four-vector scalar product =⇒ Lorentz Invariant
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Spin in e+e− annihilation

• in general, the electron and positron are not polarized, i.e. there is equal numbers
of positive and negative helicity states

• there are four possible combinations of spins in the initial state:

• similarly there are four possible helicity combinations in the final state
• in total there are 16 combinations, e.g. RL→RR, RL→RL, ...

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 8



Spin in e+e− annihilation

• to account for these states we need to sum over all 16 possible helicity
combinations and then average over the number of initial helicity states:

⟨|M|2⟩ = 1

4

∑
spins

|Mi |2 =
1

4

(
|MLL→LL|2 + |MLL→LR |2 + . . .

)
(12)

• i.e. need to evaluate M = − e2

s je · jµ for all 16 helicity combinations
• fortunately, in the limit E ≫ mµ only 4 helicity combinations give non-zero matrix

elements - this is an important feature of QED/QCD
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Spin in e+e− annihilation

• in the C.o.M. frame in the limit E ≫ m:
p1 = (E , 0, 0,E ), p2 = (E , 0, 0,−E ),
p3 = (E ,E sin θ, 0,E cos θ),
p4 = (E ,−E sin θ, 0,−E cos θ)
• left- and right-handed helicity spinors for particles and antiparticles:

u↑ = N


c

e iϕs
|⃗p|

E+mc
|⃗p|

E+me iϕs

; u↓ = N


−s
e iϕc
|⃗p|

E+m s
− |⃗p|

E+me iϕc

; v↑ = N


|⃗p|

E+m s
− |⃗p|

E+me iϕc
−s
e iϕc

; v↓ = N


|⃗p|

E+mc
|⃗p|

E+me iϕs
c

e iϕs


(13)

where s = sin
θ

2
, c = cos

θ

2
and N =

√
E + m
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Spin in e+e− annihilation

• in the limit E ≫ m these become:

u↑ =
√

E


c

se iϕ

c
se iϕ

; u↓ =
√

E


−s
ce iϕ

s
−ce iϕ

; v↑ =
√

E


s

−ce iϕ

−s
ce iϕ

; v↑ =
√

E


c

se iϕ

c
se iϕ

;

(14)
where s = sin

θ

2
, c = cos

θ

2
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Spin in e+e− annihilation

• the initial-state e− can either be in a left- or right-handed helicity state:

u↑(p1) =
√

E


1
0
1
0

; u↓(p1) =
√

E


0
1
0
−1

; (15)

• for the initial state positron (θ = π) can have either:

v↑(p2) =
√

E


1
0
−1
0

; v↓(p2) =
√

E


0
1
0
1

; (16)

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 12



Spin in e+e− annihilation

• similarly for the final state µ− with polar angle θ and choosing ϕ = 0:

u↑(p3) =
√

E


c
s
c
s

; u↓(p3) =
√

E


−s
c
s
−c

; (17)
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Spin in e+e− annihilation

• and for the final state µ+ replacing θ → π − θ, ϕ→ π obtain:

v↑(p4) =
√

E


c
s
−c
s

; v↓(p4) =
√

E


s
−c
s
−c

; (18)

using sin
(
π − θ

2

)
= cos

θ

2
, cos

(
π − θ

2

)
= sin

θ

2
, e−iπ = −1

• wish to calculate the matrix element M = −e2
s je · jµ

• first consider the muon current jµ for 4 possible helicity combinations:
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The muon current

• want to evaluate (jµ)ν = ū(p3)γνv(p4) for all helicity combinations
• for arbitrary spinors ψ, ϕ it is straightforward to show that the components of
ψγµϕ:

ψγ0ϕ = ψ†γ0γ0ϕ = ψ∗
1ϕ1 + ψ∗

2ϕ2 + ψ∗
3ϕ3 + ψ∗

4ϕ4 (19)
ψγ1ϕ = ψ†γ0γ1ϕ = ψ∗

1ϕ4 + ψ∗
2ϕ3 + ψ∗

3ϕ2 + ψ∗
4ϕ1 (20)

ψγ2ϕ = ψ†γ0γ2ϕ = −i(ψ∗
1ϕ4 − ψ∗

2ϕ3 + ψ∗
3ϕ2 − ψ∗

4ϕ1) (21)
ψγ3ϕ = ψ†γ0γ3ϕ = ψ∗

1ϕ3 − ψ∗
2ϕ4 + ψ∗

3ϕ1 − ψ∗
4ϕ2 (22)
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The muon current

• consider the µ−Rµ
+
L combination using ψ = u↑, ϕ = v↓ with

v↓ =
√

E


s
−c
s
−c

; u↑ =
√

E


c
s
c
s

 :

u↑(p3)γ0v↓(p4) = E (cs − sc + cs − sc) = 0 (23)
u↑(p3)γ1v↓(p4) = E (−c2 + s2 − c2 + s2) = 2E (s2 − c2) = −2E cos θ (24)
u↑(p3)γ2v↓(p4) = −iE (−c2 − s2 − c2 − s2) = 2iE (25)
u↑(p3)γ3v↓(p4) = E (cs + sc + cs + sc) = 4Esc = 2E sin θ (26)
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The muon current

• hence the four-vector muon current for the RL combination is:

u↑(p3)γνv↓(p4) = 2E (0,− cos θ, i , sin θ) (27)

• the results for the four helicity combinations are:
u↑(p3)γνv↓(p4) = 2E (0,− cos θ, i , sin θ) RL (28)
u↑(p3)γνv↑(p4) = (0, 0, 0, 0) RR (29)
u↓(p3)γνv↓(p4) = (0, 0, 0, 0) LL (30)
u↓(p3)γνv↑(p4) = 2E (0,− cos θ,−i , sin θ) LR (31)
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The muon current

In the limit E ≫ m only two helicity combinations are non-zero!
• this is an important feature of QED. It applies equally to QCD.
• in the Weak interaction only one helicity combination contributes.
• the origin of this will be discussed in the last part of this lecture
• but as a consequence of the 16 possible helicity combinations only four given

non-zero matrix elements
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The muon current

• for e+e− → µ+µ− now only have to consider four matrix elements:
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The muon current

• previously we derived the muon currents for the allowed helicities:
µ−Rµ

+
L :u↑(p3)γνv↓(p4) = 2E (0,− cos θ, i , sin θ) (32)

µ−L µ
+
R :u↓(p3)γνv↑(p4) = 2E (0,− cos θ,−i , sin θ) (33)

• now need to consider the electron current
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The electron current
• the incoming electron and positron spinors (L and R helicities) are:

u↑ =
√

E


1
0
1
0

; u↓ =
√

E


0
1
0
−1

; v↑ =
√

E


1
0
−1
0

; v↓ =
√

E


0
1
0
1

; (34)

• the electron current can either be obtained from Eq. 19 or directly from the
expressions for the muon current:

(je)µ = v(p2)γµu(p1) (jµ)µ = u(p3)γµv(p4) (35)
• taking the Hermitian conjugate of the muon current gives:

[u(p3)γµv(p4)]† =
[
u(p3)†γ0γµv(p4)

]†
(36)

=v(p4)†γµ†γ0†u(p3) (AB)† = B†A† (37)
=v(p4)†γµ†γ0u(p3) γ0† = γ0 (38)
=v(p4)†γ0γµu(p3) γµ†γ0 = γ0γµ (39)
=v(p4)γµu(p3) (40)
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The electron current

• taking the complex conjugate of the muon currents for the two non-zero helicity
configurations:

v↓(p4)γµu↑(p3) = [u↑(p3)γνv↓(p4)]∗ = 2E (0,− cos θ,−i , sin θ) (41)
v↑(p4)γµu↓(p3) = [u↓(p3)γνv↑(p4)]∗ = 2E (0,− cos θ, i , sin θ) (42)

To obtain the electron currents we simply need to set θ = 0:
e−R e+L : v↓(p2)γνu↑(p1) = 2E (0,−1,−i , 0) (43)
e−L e+R : v↑(p2)γνu↓(p1) = 2E (0,−1, i , 0) (44)
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Matrix element calculation
• we can now calculate M = −e2

s je · jµ for the four possible helicity combinations
• e.g. we will do it for e−R e+L → µ−Rµ

+
L which we will denote MRR :

here the first subscript refers to the helicity of the e− and the second
to the helicity of the µ−. Don’t need to specify other helicities due to
“helicity conservation”, only certain chiral combinations are non-zero

• using:
e−R e+L : (je)µ = v↓(p2)γνu↑(p1) = 2E (0,−1,−i , 0) (45)
µ−Rµ

+
L : (jµ)ν = u↑(p3)γνv↓(p4) = 2E (0,− cos θ, i , sin θ) (46)

• gives:

MRR =− e2
s [2E (0,−1,−i , 0)] · [2E (0,− cos θ, i , sin θ)] (47)

=− e2(1 + cos θ) = −4πα(1 + cos θ), where α = e2/4π ≈ 1/137 (48)
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Matrix element calculation
Similarly:

|MRR |2 = |MLL|2 = (4πα)2(1 + cos θ)2 (49)
|MRL|2 = |MLR |2 = (4πα)2(1− cos θ)2 (50)

• assuming that the incoming electrons and positrons are unpolarized, all 4 possible
initial helicity states are equally likely
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Differential cross section

• the cross section is obtained by averaging over the initial spin states and summing
over the final spin states:

dσ
dΩ

=
1

4
× 1

64π2s (|MRR |2 + |MRL|2 + |MLR |2 + |MLL|2) (51)

dσ
dΩ

=
(4πα)2

256π2s

(
2(1 + cos θ)2 + 2(1− cos θ)2

)
(52)

=⇒ dσ
dΩ

=
α2

s (1 + cos2 θ) (53)
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Differential cross section: measurement

Example: e+e− → µ+µ− at
√

s = 29 GeV
Mark II Expt., M.E.Levi et al.,

Phys. Rev. Lett. 51 (1983) 1941

- - - - pure QED, O
(
α3

)
—— QED + Z contribution
Angular distribution becomes
slightly asymmetric in higher order
QED or when Z contribution is
included
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Total cross section: measurement
• the total cross section is obtained by integrating over θ, ϕ using:∫ (

1 + cos2 θ
)
dΩ = 2π

∫ +1

−1

(
1 + cos2 θ

)
d cos θ =

16π

3
(54)

giving the QED total cross section for the process e+e− → µ+µ−

σ =
4πα2

3s (55)

• lowest order cross section calculation provides a good
description of the data !

• this is an impressive result: from first principles we have
arrived at an expression for the electron-positron
annihilation cross section which is good to 1%
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Spin considerations (E ≫ m)

• the angular dependence of the QED electron-positron matrix elements can be
understood in terms of angular momentum

• because of the allowed helicity states, the electron and positron interact in a spin
state with Sz = ±1, i.e. in a total spin 1 state aligned along the z axis: |1,+1⟩ or
|1,−1⟩

• similarly, the muon and anti-muon are produced in a total spin 1 state aligned along
an axis with polar angle θ, e.g.

• =⇒ MRR ∝ ⟨ψ|1, 1⟩ where ψ is the spin state, |1, 1⟩θ of the µ+µ−
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Spin considerations (E ≫ m)

• to evaluate this need to express |1, 1⟩θ in terms of eigenstates of Sz
• it is possible to show that:

|1, 1⟩θ =
1

2
(1− cos θ) |1,−1⟩+ 1√

2
sin θ |1, 0⟩+ 1

2
(1 + cos θ) |1,+1⟩ (56)
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Spin considerations (E ≫ m)
• using the wave-function for a spin 1 state along an axis at angle θ can immediately

understand the angular dependence:
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Lorentz Invariant form of Matrix Element
• note that the spin-averaged ME derived above is written in terms of the muon

angle in the C.o.M. frame:
⟨
∣∣M2

fi
∣∣⟩ = 1

4
×
(
|MRR |2 + |MRL|2 + |MLR |2 + |MLL|2

)
(57)

=
1

4
e4
(
2(1 + cos θ)2 + 2(1− cos θ)2

)
(58)

= e4(1 + cos2 θ) (59)

• the matrix element is Lorentz Invariant (scalar product of 4-vector currents) and it
is desirable to write it in a frame-independent form, i.e. express in terms of
Lorentz-invariant 4-vector scalar products

• in the C.o.M. p1 = (E , 0, 0,E ), p2 = (E , 0, 0,−E ), p3 = (E ,E sin θ, 0,E cos θ),
p4 = (E ,−E sin θ, 0,−E cos θ) giving p1 · p2 = 2E 2, p1 · p3 = E 2(1− cos θ),
p1 · p4 = E 2(1 + cos θ)

• hence: ⟨|Mfi |2⟩ = 2e4 (p1 · p3)2 + (p1 · p4)2

(p1 · p2)2
≡ 2e4

(
t2 + u2

s2

)
(60)

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 31



Chirality
• the helicity eigenstates for a particle/anti-particle for E ≫ m are:

u↑ =
√

E


c

se iϕ

c
se iϕ

; u↓ =
√

E


−s
ce iϕ

s
−ce iϕ

; v↑ =
√

E


s

−ce iϕ

−s
ce iϕ

; v↑ =
√

E


c

se iϕ

c
se iϕ

; (61)

where s = sin θ
2 , c = cos θ

2
• define the matrix:

γ5 ≡ iγ0γ1γ2γ3 =

 0
1 0
0 1

1 0
0 1

0

 =

(
0 I
I 0

)
(62)

• in the limit E ≫ m the helicity states are also eigenstates of γ5:
γ5u↑ = +u↑; γ5u↓ = −u↓; γ5v↑ = −v↑; γ5v↓ = +v↓; (63)
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Chirality

• in general, define eigenstates of γ5 as left- and right-handed chiral states: uR , uL,
vR , vL, i.e.:

γ5uR = +uR ; γ5uL = −uL; γ5vR = −vR ; γ5vL = +vL; (64)

• in the limit E ≫ m (and only in this limit):

uR ≡ u↑; uL ≡ u↓; vR ≡ v↑; vL ≡ v↓; (65)

• this is a subtle but important point: in general the helicity and chiral eigenstates are
not the same. It is only in the ultra-relativistic limit that the chiral eigenstates
correspond to the helicity eigenstates.

• chirality is an important concept in the structure of QED, and any interaction of
the form uγνu
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Chirality
• in general, the eigenstates of the chirality operator are:

γ5uR = +uR ; γ5uL = −uL; γ5vR = −vR ; γ5vL = +vL; (66)

• define the projection operators:

PR =
1

2

(
1 + γ5

)
; PL =

1

2

(
1− γ5

)
(67)

• the projection operators project out the chiral eigenstates:

PRuR = uR ; PRuL = 0; PLuR = 0; PLuL = uL; (68)
PRvR = 0; PRvL = vL; PLvR = vR ; PLvL = 0 (69)

• note PR projects out right-handed particle states and left-handed anti-particle states
• we can then write any spinor in terms of it left and right-handed chiral components:

ψ = ψR + ψL =
1

2

(
1 + γ5

)
ψ +

1

2

(
1− γ5

)
ψ (70)
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Chirality in QED
• in QED the basic interaction between a fermion and photon is:

ieψγµϕ (71)
• can decompose the spinors in terms of Left and Right-handed chiral components:

ieψγµϕ = ie
(
ψL + ψR

)
γµ(ϕL + ϕR) (72)

= ie
(
ψRγ

µϕR + ψRγ
µϕL + ψLγ

µϕR + ψLγ
µϕL

)
(73)

• using the properties of γ5:(
γ5

)2
= 1; γ5† = γ5; γ5γµ = −γµγ5 (74)

it is straightforward to show that

ψRγ
µϕL = 0; ψLγ

µϕR = 0 (75)
• hence only certain combinations of chiral eigenstates contribute to the interaction.
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Chirality in QED

• for E ≫ m the chiral and helicity eigenstates are equivalent
• hence for E ≫ m only certain helicity combinations contribute to the QED vertex!
• this is why previously we found that for two of the four helicity combinations for the

muon current were zero
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Allowed QED Helicity Combinations
• in the ultra-relativistic limit the helicity eigenstates ≡ chiral eigenstates
• in this limit, the only non-zero helicity combinations in QED are:
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Summary

• in the center-of-mass frame the e+e− → µ+µ− differential cross section is:

dσ
dΩ

=
α2

4s (1 + cos2 θ) (76)

note: neglected masses of the muons, i.e. assumed E ≫ mµ

• in QED only certain combinations of left- and right-handed chiral states give
non-zero matrix elements

• chiral states defined by chiral projection operators:

PR =
1

2
(1 + γ5); PL =

1

2
(1− γ5) (77)
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Summary

• in limit E ≫ m the chiral eigenstates correspond to the helicity eigenstates and only
certain helicity eigenstates give non-zero ME:
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