
6 Electron–positron annihilation

Experimental results from electron–positron colliders have been central to the
development and understanding of the Standard Model. In this chapter, the
derivation of the cross section for e+e−→ µ+µ− annihilation is used as an
example of a calculation in QED. The cross section is first calculated using
helicity amplitudes to evaluate the matrix elements, highlighting the under-
lying spin structure of the interaction. In the final starred section, the more
abstract trace formalism is introduced.

6.1 Calculations in perturbation theory

In QED, the dominant contribution to a cross section or decay rate is usually the
Feynman diagram with the fewest number of interaction vertices, known as the
lowest-order (LO) diagram. For the annihilation process e+e−→ µ+µ−, there is just
a single lowest-order QED diagram, shown in Figure 6.1. In this diagram there
are two QED interaction vertices, each of which contributes a factor ieγ µ to the
matrix element. Therefore, regardless of any other considerations, the matrix ele-
ment squared |M|2 will be proportional to e4 or equivalently |M|2 ∝ α2, where α is
the dimensionless fine-structure constant α= e2/4π. In general, each QED vertex
contributes a factor of α to the expressions for cross sections and decay rates.

In addition to the lowest-order diagram of Figure 6.1, there are an infinite num-
ber of higher-order-diagrams resulting in the same final state. For example, three of
the next-to-leading-order (NLO) diagrams for e+e−→ µ+µ−, each with four inter-
action vertices, are shown in Figure 6.2. Taken in isolation, the matrix element
squared for each of these diagrams has a factor α for each of the four QED vertices,
and hence |M|2 ∝α4. However, in quantum mechanics the individual Feynman dia-
grams for a particular process can not be taken in isolation; the total amplitudeM f i

for a particular process is the sum of all individual amplitudes giving the same final
state. In the case of e+e−→ µ+µ−, this sum can be written as

M f i =MLO +
∑

j

M1, j + · · · , (6.1)
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!Fig. 6.1 The lowest-order Feynman diagram for the QED annihilation process e+e− → µ+µ−.
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e!Fig. 6.2 Three of theO(α4) Feynman diagrams contributing the QED annihilation process e+e− → µ+µ−.

where MLO is the matrix element for the single lowest-order (LO) diagram of
Figure 6.1,M1, j are the matrix elements for the NLO diagrams with four interac-
tion vertices, including those of Figure 6.2, and the dots indicate the higher-order
diagrams with more than four vertices. The dependence of the each of the terms in
(6.1) on α can be shown explicitly by writing it as

M f i = αMLO + α
2
∑

j

M1, j + · · · ,

where the various powers of the coupling constant α have been factored out of the
matrix element, such thatMLO is written as αMLO, etc.

Physical observables, such as decay rates and cross sections, depend on the
matrix element squared given by

|M f i|2 =

αMLO + α

2
∑

j

M1,j + · · ·




αM∗LO + α

2
∑

k

M∗1,k + · · ·



= α2|MLO|2 + α3
∑

j

(
MLOM∗1, j + M∗LOM1, j

)
+ α4

∑

jk

M1, jM∗1,k + · · · .

(6.2)

In general, the individual amplitudes are complex and the contributions from differ-
ent diagrams can interfere either positively or negatively. Equation (6.2) gives the
QED perturbation expansion in terms of powers of α. For QED, the dimensionless
coupling constant α ≈ 1/137 is sufficiently small that this series converges rapidly
and is dominated by the LO term. The interference between the lowest-order dia-
gram and the NLO diagrams, terms such as (MLOM∗1, j +M∗LOM1, j), are suppressed
by a factor of α ≈ 1/137 relative to the lowest-order term. Hence, if all higher-order
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terms are neglected, it is reasonable to expect QED calculations to be accurate to
O(1%). For this reason, only the lowest-order diagram(s) will be considered for the
calculations in this book, although the impact of the higher-order diagrams will be
discussed further in Chapter 10 in the context of renormalisation.

6.2 Electron–positron annihilation

The matrix element for the lowest-order diagram for the process e+e−→ µ+µ− is
given in (5.20),

M = − e2

q2 gµν
[
v(p2)γ µu(p1)

][
u(p3)γνv(p4)

]
(6.3)

= − e2

q2 gµν j µe j νµ , (6.4)

where the electron and muon four-vector currents are defined as

j µe = v(p2)γ µu(p1) and j νµ = u(p3)γνv(p4). (6.5)

The four-momentum of the virtual photon is determined by conservation of energy
and momentum at the interaction vertex, q= p1 + p2 = p3 + p4, and therefore
q2 = (p1 + p2)2 = s, where s is the centre-of-mass energy squared. Hence the matrix
element of (6.4) can be written as

M = −e2

s
je · jµ. (6.6)

Assuming that the electron and positron beams have equal energies, which has been
the case for the majority of high-energy e+e− colliders, the centre-of-mass energy
is simply twice the beam energy,

√
s = 2Ebeam.

6.2.1 Spin sums

To calculate the e+e−→ µ+µ− cross section, the matrix element of (6.6) needs to
be evaluated taking into account the possible spin states of the particles involved.
Because each of the e+, e−, µ+ and µ− can be in one of two possible helicity states,
there are four possible helicity configurations in the initial state, shown Figure 6.3,
and four possible helicity configurations in the µ+µ− final state. Hence, the process
e+e−→ µ+µ− consists of sixteen possible orthogonal helicity combinations, each of
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RR LL LRRL
e- e- e- e-e+ e+ e+ e+!Fig. 6.3 The four possible helicity combinations in the e+e− initial state.

which constitutes a separate physical process, for example e+↑ e−↑ → µ+↑µ−↑ (denoted
RR→RR) and e+↑ e−↑ → µ+↑µ−↓ . Because the helicity states involved are orthogonal,
the processes for the different helicity configurations do not interfere and the matrix
element squared for each of the sixteen possible helicity configurations can be
considered independently.

For a particular initial-state spin configuration, the total e+e−→ µ+µ− annihila-
tion rate is given by the sum of the rates for the four possible µ+µ− helicity states
(each of which is a separate process). Therefore, for a given initial-state helicity
configuration, the cross section is obtained by taking the sum of the four corre-
sponding |M|2 terms. For example, for the case where the colliding electron and
positron are both in right-handed helicity states,

∑
|MRR|2 = |MRR→RR|2 + |MRR→RL|2 + |MRR→LR|2 + |MRR→LL|2.

In most e+e− colliders, the colliding electron and positron beams are unpolarised,
which means that there are equal numbers of positive and negative helicity elec-
trons/positrons present in the initial state. In this case, the helicity configuration
for a particular collision is equally likely to occur in any one of the four possi-
ble helicity states of the e+e− initial state. This is accounted for by defining the
spin-averaged summed matrix element squared,

〈|M f i|2〉 =
1
4

(
|MRR|2 + |MRL|2 + |MLR|2 + |MLL|2

)

=
1
4

(
|MRR→RR|2 + |MRR→RL|2 + · · · + |MRL→RR|2 + · · ·

)
,

where the factor 1
4 accounts for the average over the four possible initial-state helic-

ity configurations. In general, the spin-averaged matrix element is given by

〈|M f i|2〉 =
1
4

∑

spins

|M|2,

where the sum corresponds to all possible helicity configurations. Consequently,
to evaluate the e+e−→ µ+µ− cross section, it is necessary to calculate the matrix
element of (6.6) for sixteen helicity combinations. This sum can be performed in
two ways. One possibility is to use the trace techniques described in Section 6.5,
where the sum is calculated directly using the properties of the Dirac spinors. The
second possibility is to calculate each of the sixteen individual helicity amplitudes.
This direct calculation of the helicity amplitudes involves more steps, but has the
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advantages of being conceptually simpler and of leading to a deeper physical under-
standing of the helicity structure of the QED interaction.

6.2.2 Helicity amplitudes

In the limit where the masses of the particles can be neglected,
√

s+mµ, the four-
momenta in the process e+e−→ µ+µ−, as shown Figure 6.4, can be written

p1 = (E, 0, 0, E), (6.7)

p2 = (E, 0, 0,−E), (6.8)

p3 = (E, E sin θ, 0, E cos θ), (6.9)

p4 = (E,−E sin θ, 0,−E cos θ), (6.10)

where, with no loss of generality, the final state µ− and µ+ are taken to be produced
with azimuthal angles of φ = 0 and φ = π respectively.

The spinors appearing in the four-vector currents of (6.5) are the ultra-relativistic
(E+m) limit of the helicity eigenstates of (4.67):

u↑=
√

E




c
seiφ

c
seiφ



, u↓=

√
E




−s
ceiφ

s
−ceiφ



, v↑=

√
E




s
−ceiφ

−s
ceiφ



, v↓=

√
E




c
seiφ

c
seiφ



, (6.11)

where s= sin θ
2 and c= cos θ

2 . The two possible spinors for initial-state electron
with (θ = 0, φ = 0) and for the initial-state positron with (θ = π, φ = π) are

u↑(p1) =
√

E




1
0
1
0



, u↓(p1) =

√
E




0
1
0
−1



, v↑(p2) =

√
E




1
0
−1

0



, v↓(p2) =

√
E




0
−1

0
−1



.
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!Fig. 6.4 The QED annihilation process e+e−→ µ+µ− viewed in the centre-of-mass frame and the corresponding
lowest-order Feynman diagram.
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The spinors for the final-state particles are obtained by using the spherical polar
angles (θ, 0) for the µ− and (π − θ, π) for the µ+. Using the trigonometric relations

sin
(π − θ

2

)
= cos

( θ
2

)
, cos

(π − θ
2

)
= sin

( θ
2

)
and eiπ = −1,

the spinors for the two possible helicity states of the final-state µ+ and µ− are

u↑(p3) =
√

E




c
s
c
s



, u↓(p3) =

√
E




−s
c
s
−c



, v↑(p4) =

√
E




c
s
−c
−s



, v↓(p4) =

√
E




s
−c

s
−c



.

6.2.3 The muon and electron currents

The matrix element for a particular helicity combination is obtained from (6.6),

M = −e2

s
je · jµ,

where the corresponding four-vector currents of (6.5) are defined in terms of the
above spinors for the helicity eigenstates. The muon current, j νµ = u(p3)γνv(p4),
needs to be evaluated for the four possible final-state helicity combinations shown
in Figure 6.5. Using the Dirac–Pauli representation of the γ-matrices (4.35), it
is straightforward to show that, for any two spinors ψ and φ, the components of
ψγ µφ ≡ ψ†γ0γ µφ are

ψγ0φ = ψ†γ0γ0φ = ψ∗1φ1 + ψ
∗
2φ2 + ψ

∗
3φ3 + ψ

∗
4φ4, (6.12)

ψγ1φ = ψ†γ0γ1φ = ψ∗1φ4 + ψ
∗
2φ3 + ψ

∗
3φ2 + ψ

∗
4φ1, (6.13)

ψγ2φ = ψ†γ0γ2φ = −i(ψ∗1φ4 − ψ∗2φ3 + ψ
∗
3φ2 − ψ∗4φ1), (6.14)

ψγ3φ = ψ†γ0γ3φ = ψ∗1φ3 − ψ∗2φ4 + ψ
∗
3φ1 − ψ∗4φ2. (6.15)

Using these relations, the four components of the four-vector current jµ can be
determined by using the spinors for a particular helicity combination. For example,
for the RL combination where the µ− is produced in a right-handed helicity state
and the µ+ is produced in a left-handed helicity state, the appropriate spinors are
u↑(p3) and v↓(p4). In this case, from Equations (6.12)–(6.15), the components of

µ+

µ-

µ+

µ-

µ+

µ-

µ+

µ-

RR LL LRRL!Fig. 6.5 The four possible helicity combinations for theµ+µ− )nal state.



134 Electron–positron annihilation

the muon current are

j 0
µ = u↑(p3)γ0v↓(p4) = E(cs − sc + cs − sc) = 0,

j 1
µ = u↑(p3)γ1v↓(p4) = E(−c2 + s2 − c2 + s2) = 2E(s2 − c2) = −2E cos θ,

j 2
µ = u↑(p3)γ2v↓(p4) = −iE(−c2 − s2 − c2 − s2) = 2iE,

j 3
µ = u↑(p3)γ3v↓(p4) = E(cs + sc + cs + sc) = 4Esc = 2E sin θ.

Hence, the four-vector current for the helicity combination µ−↑µ
+
↓ is

jµ,RL = u↑(p3)γνv↓(p4) = 2E(0,− cos θ, i, sin θ).

Repeating the calculation for the other three µ+µ− helicity combinations gives

jµ,RL = u↑(p3)γνv↓(p4) = 2E(0,− cos θ, i, sin θ), (6.16)

jµ,RR = u↑(p3)γνv↑(p4) = (0, 0, 0, 0),

jµ,LL = u↓(p3)γνv↓(p4) = (0, 0, 0, 0),

jµ,LR = u↓(p3)γνv↑(p4) = 2E(0,− cos θ,−i, sin θ). (6.17)

Hence, in the limit where E + mµ, only two of the four µ+µ− helicity combinations
lead to a non-zero four-vector current. This important feature of QED is related to
the chiral nature of the interaction, as discussed in Section 6.4.

The electron currents for the four possible initial-state helicity configurations can
be evaluated directly using (6.12)–(6.15). Alternatively, the electron currents can
be obtained by noting that they differ from the form of the muon currents only in
the order in which the particle and antiparticle spinors appear, j µe = v(p2)γ µu(p1)
compared to j νµ = u(p3)γνv(p4). The relationship between vγ µu and uγ µv can be
found by taking the Hermitian conjugate of the muon current to give

[
u(p3)γ µv(p4)

]† =
[
u(p3)†γ0γ µv(p4)

]†

= v(p4)†γ µ†γ0†u(p3) using (AB)† = B†A†

= v(p4)†γ µ†γ0u(p3) since γ0† = γ0

= v(p4)†γ0γ µu(p3) since γ µ†γ0 = γ0γ µ

= v(p4)γ µu(p3).

The effect of taking the Hermitian conjugate of the QED current is to swap the order
in which the spinors appear in the current. Because each element of the four-vector
current, labelled by the index µ, is just a complex number, the elements of the four-
vector current for vγ µu are given by the complex conjugates of the corresponding
elements of uγ µv. Therefore from (6.16) and (6.17),

v↓(p4)γ µu↑(p3) =
[
u↑(p3)γ µv↓(p4)

]∗ = 2E(0,− cos θ,−i, sin θ)

v↑(p4)γ µu↓(p3) =
[
u↓(p3)γ µv↑(p4)

]∗ = 2E(0,− cos θ, i, sin θ).
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By setting θ= 0, it follows that the two non-zero electron currents are

je,RL = v↓(p2)γ µu↑(p1) = 2E(0,−1,−i, 0), (6.18)

je,LR = v↑(p2)γ µu↓(p1) = 2E(0,−1, i, 0). (6.19)

Furthermore, from jµ,LL = jµ,RR = 0, it follows that je,LL and je,RR are also zero.

6.2.4 The e+e− → µ+µ− cross section

In the limit E+m, only two of the four helicity combinations for both the ini-
tial and final state lead to non-zero four-vector currents. Therefore, in the process
e+e−→ µ+µ− only the four helicity combinations shown in Figure 6.6 give non-
zero matrix elements. For each of these four helicity combinations, the matrix ele-
ment is obtained from

M = −e2

s
je · jµ.

For example, the matrix element MRL→RL for the process e−↑ e+↓ → µ−↑µ+↓ is deter-
mined by the scalar product of the currents

j µe,RL = v↓(p2)γ µu↑(p1) = 2E(0,−1,−i, 0),

and j νµ,RL = u↑(p3)γνv↓(p4) = 2E(0,− cos θ, i, sin θ).

Taking the four-vector scalar product je,RL · jµ,RL and writing s= 4E2 gives

MRL→RL = −
e2

s
[2E(0,−1,−i, 0)]·[2E(0,− cos θ, i, sin θ)]

= e2(1 + cos θ)

= 4πα(1 + cos θ).

Using the muon and electron currents of (6.16)–(6.19), it follows that the matrix
elements corresponding to the four helicity combinations of Figure 6.6 are

|MRL→RL|2 = |MLR→LR|2 = (4πα)2(1 + cos θ)2, (6.20)

|MRL→LR|2 = |MLR→RL|2 = (4πα)2(1 − cos θ)2, (6.21)

µ+

µ-

e- e+

µ+

µ-

e- e+

µ+

µ-

e- e+

µ+

µ-

e- e+

RL → RL RL → LR LR → RL LR → LR!Fig. 6.6 The four helicity combinations for e+e− → µ+µ− that in the limit E+m give non-zero matrix elements.
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where θ is the angle of the outgoing µ− with respect to the incoming e− direction.
The spin-averaged matrix element for the process e+e− → µ+µ− is given by

〈|M f i|2〉 =
1
4
×

(
|MRL→RL|2 + |MRL→LR|2 + |MLR→RL|2 + |M2

LR→LR|
)

=
1
4

e4
[
2(1 + cos θ)2 + 2(1 − cos θ)2

]

= e4(1 + cos2 θ). (6.22)

The corresponding differential cross section is obtained by substituting the spin-
averaged matrix element squared of (6.22) into the general cross section formula
of (3.50) with p∗i = p∗f = E, giving

dσ
dΩ
=

1
64π2s

e4(1 + cos2 θ),

where the solid angle is defined in terms of the spherical polar angles of the µ−

as measured in the centre-of-mass frame. Finally, when written in terms of the
dimensionless coupling constant α= e2/(4π), the e+e−→ µ+µ− differential cross
section becomes

dσ
dΩ
=
α2

4s
(1 + cos2 θ). (6.23)

Figure 6.7 shows the predicted (1+ cos2 θ) angular distribution of the e+e−→
µ+µ− differential cross section broken down into the contributions from the differ-
ent helicity combinations. The distribution is forward–backward symmetric, mean-
ing that equal numbers of µ− are produced in the forward hemisphere (cos θ> 0) as
in the backwards hemisphere (cos θ< 0). This symmetry is a direct consequence of
the parity conserving nature of the QED interaction, as explained in Chapter 11.

The right-hand plot of Figure 6.7 shows the measured e+e−→ µ+µ− differen-
tial cross section at

√
s= 34.4 GeV from the JADE experiment, which operated

between 1979 and 1986 at the PETRA e+e− collider at the DESY laboratory in
Hamburg. The (1+ cos2 θ) nature of the dominant QED contribution is appar-
ent. However, the interpretation of these data is complicated the presence of elec-
troweak corrections arising from the interference between the QED amplitude and
that from the Feynman diagram involving the exchange of a Z boson (see
Chapter 15). This results in a relatively small forward–backward asymmetry in
the differential cross section.

The total e+e−→ µ+µ− cross section is obtained by integrating (6.23) over the
full solid angle range. Writing dΩ = dφ d(cos θ), the solid angle integral is simply

∫
(1 + cos2 θ) dΩ = 2π

∫ +1

−1
(1 + cos2 θ) d(cos θ) =

16π
3
.
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!Fig. 6.7 (left) The QED prediction for the distribution of cos θ in e+e− → µ+µ− annihilation, where θ is the angle
of the outgoingµ− with respect to the incoming e− direction. (right) The measured e+e−→ µ+µ− di,er-
ential cross section at

√
s= 34.4 GeV from the JADE experiment, adapted from Bartel et al. (1985). The solid

curve is the lowest-order QED prediction. The dotted curve includes electroweak corrections.

Therefore, the lowest-order prediction for the total e+e− → µ+µ− cross section is

σ =
4πα2

3s
. (6.24)

Figure 6.8 shows the experimental measurements of the e+e− → µ+µ− cross section
at centre-of-mass energies of

√
s< 40 GeV. In this case, the electroweak correc-

tions are negligible (the effects of interference with the Z boson exchange diagram
average to zero in the solid angle integral) and the lowest-order QED prediction
provides an excellent description of the data. This is an impressive result, starting
from first principles, it has been possible to calculate an expression for the cross
section for electron–positron annihilation which is accurate at the O(1%) level.

6.2.5 Lorentz-invariant form

The spin-averaged matrix element of (6.22) is expressed in terms of the angle θ
as measured in the centre-of-mass frame. However, because the matrix element is
Lorentz invariant, it also can be expressed in an explicitly Lorentz-invariant form
using four-vector scalar products formed from the four-momenta of the initial- and
final-state particles. From the four-momenta defined in (6.7)−(6.10),

p1 ·p2 = 2E2, p1 ·p3 = E2(1 − cos θ) and p1 ·p4 = E2(1 + cos θ).
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Hence the spin-averaged matrix element of (6.22) can be written as

〈|M f i|2〉 = 2e4 (p1 ·p3)2 + (p1 ·p4)2

(p1 ·p2)2 . (6.25)

The scalar products appearing in (6.25) can be expressed in terms of the Mandel-
stam variables, where for example

s = (p1 + p2)2 = p2
1 + p2

2 + 2p1 ·p2 = m2
1 + m2

2 + 2p1 ·p2.

In the limit, where the masses of the particles can be neglected,

s = +2p1 ·p2, t = −2p1 ·p3 and u = −2p1 ·p4,

and therefore (6.25) can be written as

〈|M f i|2〉 = 2e4
(
t2 + u2

s2

)
. (6.26)

This expression, which depends only on Lorentz-invariant quantities, is valid in all
frames of reference.
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6.3 Spin in electron–positron annihilation

The four helicity combinations for the process e+e−→ µ+µ− that give non-zero
matrix elements are shown in Figure 6.6. In each case, the spins of the two initial-
state particles are aligned, as are the spins of the two final-state particles. Defining
the z-axis to be in the direction of the incoming electron beam, the z-component
the combined spin of the e+ and e− is therefore either +1 or −1, implying that the
non-zero matrix elements correspond to the cases where the electron and positron
collide in a state of total spin-1. Therefore, the spin state for the RL helicity com-
bination can be identified as |S , S z〉= |1, + 1〉 and that for the LR combinations as
|1,−1〉. Similarly, the helicity combinations of the µ+µ− system correspond to spin
states of |1,±1〉θ measured with respect to the axis in the direction of µ−, as indi-
cated in Figure 6.9.

The angular dependence of the matrix elements for each helicity combination
can be understood in terms of these spin states. The operator corresponding to the
component of spin along an axis defined by the unit vector n at an angle θ to the z-
axis is Ŝ n =

1
2 n ·σ. Using this operator, it is possible to express the spin states of the

µ+µ− system in terms of the eigenstates of Ŝ z (see Problem 6.6). For example, the
spin wavefunction of the RL helicity combination of the µ+µ− final state, |1,+1〉θ,
can be expressed as

|1,+1〉θ = 1
2 (1 − cos θ) |1,−1〉 + 1√

2
sin θ |1, 0〉 + 1

2 (1 + cos θ) |1,+1〉.

The angular distributions of matrix elements of (6.20) and (6.21) can be understood
in terms of the inner products of the spin states of initial-state e+e− system and the

|1,1〉q

|1,1〉q

|1,1〉z

|1, -1〉z

-1 +1cosq

-1 +1cosq

µ-

µ-

µ+

µ+

e+

e+

e-

e-

RL ®  RL

LR ®  RL!Fig. 6.9 The orientations of the spin-1 system in the RL→ RL and LR→ RL helicity combinations and the angular
dependence of the corresponding matrix element in the limit where E+m.
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final-state µ+µ− system. For example,

MRL→RL ∝ 〈1,+1|1,+1〉θ = 1
2 (1 + cos θ)

MLR→RL ∝ 〈1,−1|1,+1〉θ = 1
2 (1 − cos θ).

Hence, in the limit E+m, the spin combinations that give non-zero matrix ele-
ments correspond to states of total spin-1 with the spin vector pointing along the
direction of the particles motion and the resulting angular distributions can be
understood in terms of the quantum mechanics of spin-1. This is consistent with
the notion that an interaction of the form φγ µψ corresponds to the exchange of a
spin-1 particle, in this case the photon.

6.4 Chirality

In the limit E+m only four out of the sixteen possible helicity combinations for
the process e+e−→ e+e− give non-zero matrix elements. This does not happen by
chance, but reflects the underlying chiral structure of QED. The property of chi-
rality is an important concept in the Standard Model. Chirality is introduced by
defining the γ5-matrix as

γ5 ≡ iγ0γ1γ2γ3 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



=

(
0 I
I 0

)
. (6.27)

The significance of the γ5-matrix, whilst not immediately obvious, follows from
its mathematical properties and the nature of its eigenstates. The properties of the
γ5-matrix can be derived (see Problem 6.1) from the commutation and Hermiticity
relations of the γ-matrices given in (4.33) and (4.34), leading to

(γ5)2 = 1,

γ5† = γ5,

γ5γ µ = −γ µγ5.

(6.28)

(6.29)

(6.30)

In the limit E+m, and only in this limit, the helicity eigenstates of (6.11) are
also eigenstates of the γ5-matrix with eigenvalues

γ5u↑ = +u↑, γ5u↓ = −u↓, γ5v↑ = −v↑ and γ5v↓ = +v↓.

In general, the eigenstates of the γ5-matrix are defined as left- and right-handed
chiral states (denoted with subscripts R, L to distinguish them from the general
helicity eigenstates ↑, ↓) such that
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γ5uR = +uR and γ5uL = −uL,

γ5vR = −vR and γ5vL = +vL.
(6.31)

With this convention, when E+m the chiral eigenstates are the same as the helic-
ity eigenstates for both particle and antiparticle spinors, for example u↑ → uR and
v↓ → vL. Hence, in general, the solutions to the Dirac equation which are also eigen-
states of γ5 are identical to the massless helicity eigenstates of (6.11),

uR≡ N




c
seiφ

c
seiφ



, uL≡ N




−s
ceiφ

s
−ceiφ



, vR≡ N




s
−ceiφ

−s
ceiφ




and vL≡ N




c
seiφ

c
seiφ



, (6.32)

where the normalisation is given by N =
√

E + m. Unlike helicity, there is no simple
physical interpretation of the property of chirality, it is nevertheless an integral part
of the structure of the Standard Model.

Chiral projection operators
Any Dirac spinor can be decomposed into left- and right-handed chiral components
using the chiral projection operators, PL and PR, defined by

PR =
1
2 (1 + γ5),

PL =
1
2 (1 − γ5).

(6.33)

Using the properties of the γ5-matrix, it is straightforward to show that PR and PL

satisfy the required algebra of quantum mechanical projection operators, namely,

PR + PL = 1, PR PR = PR, PL PL = PL and PLPR = 0.

In the Dirac–Pauli representation

PR =
1
2




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1




and PL =
1
2




1 0 −1 0
0 1 0 −1
−1 0 1 0

0 −1 0 1



. (6.34)

From the definitions of (6.31), it immediately follows that the right-handed chi-
ral projection operator has the properties

PRuR = uR, PRuL = 0, PRvR = 0 and PRvL = vL.

Hence PR projects out right-handed chiral particle states and left-handed chiral
antiparticle states. Similarly, for the left-handed chiral projection operator,

PLuR = 0, PLuL = uL, PLvR = vR and PLvL = 0.
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Since PR and PL project out chiral states, any spinor u can be decomposed into left-
and right-handed chiral components with

u = aR uR + aL uL =
1
2 (1 + γ5)u + 1

2 (1 − γ5)u,

where aR and aL are complex coefficients and uR and uL are right- and left-handed
chiral eigenstates.

6.4.1 Chirality in QED

In QED, the fundamental interaction between a fermion and a photon is expressed
as a four-vector current iQfeψγ µφ, formed from the Dirac spinors ψ and φ. Any
four-vector current can be decomposed into contributions from left- and right-
handed chiral states using the chiral projection operators defined in (6.33). For
example, in the case of QED,

ψγ µφ = (a∗RψR + a∗LψL)γ µ(bRφR + bLφL)

= a∗RbRψRγ
µφR + a∗RbLψRγ

µφL + a∗LbRψLγ
µφR + a∗LbLψLγ

µφL, (6.35)

where the coefficients, a and b, will depend on the spinors being considered. The
form of the QED interaction means that two of the chiral currents in (6.35) are
always zero. For example, consider the term uL(p)γ µuR(p′). The action of PR on a
right-handed chiral spinor leaves the spinor unchanged,

uR(p′) = PRuR(p′). (6.36)

Therefore PR can always be inserted in front of right-handed chiral particle state
without changing the expression in which it appears. The equivalent relation for
the left-handed adjoint spinor is

uL(p) ≡ [uL(p)]†γ0 = [PLuL(p)]†γ0 = [ 1
2 (1 − γ5)uL(p)]†γ0

= [uL(p)]† 1
2 (1 − γ5)γ0 (using γ5 = γ5†)

= [uL(p)]†γ0 1
2 (1 + γ5) (using γ0γ5 = −γ5γ0)

= uL(p)PR.

From this it follows that

uL(p)γ µuR(p′) = uL(p)PR γ
µPR uR(p′). (6.37)

But since γ5γ µ = −γ µγ5,

PRγ
µ = 1

2 (1 + γ5)γ µ = γ µ 1
2 (1 − γ5) = γ µPL,

and thus (6.37) can be written

uL(p)γ µuR(p′) = uL(p)γ µPLPR uR(p′) = 0,
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because PLPR = 0. Therefore, the ψγ µφ form of the QED interaction, implies that
only certain combinations of chiral eigenstates give non-zero matrix elements, and
the currents of the form

uLγ
µuR = uRγ

µuL = vLγ
µvR = vRγ

µvL = vLγ
µuL = vRγ

µuR ≡ 0

are always identically zero.

6.4.2 Helicity and chirality

It is important not to confuse the concepts of helicity and chirality. Helicity eigen-
states are defined by the projection of the spin of a particle onto its direction of
motion, whereas the chiral states are the eigenstates of the γ5-matrix. The relation-
ship between the helicity eigenstates and the chiral eigenstates can be found by
decomposing the general form of the helicity spinors into their chiral components.
For example, the right-handed helicity particle spinor of (4.65) can be written as

u↑(p, θ, φ) = N




c
seiφ

κc
κseiφ




with κ =
p

E + m
and N =

√
E + m.

The spinor can be decomposed into its left- and right-handed chiral components by
considering the effect of the chiral projection operators,

PRu↑ = 1
2 (1 + κ) N




c
seiφ

c
seiφ




and PLu↑ = 1
2 (1 − κ) N




c
seiφ

−c
−seiφ



.

Therefore, the right-handed helicity spinor, expressed in terms of its chiral compo-
nents, is

u↑(p, θ, φ) = 1
2 (1 + κ) N




c
seiφ

c
seiφ



+ 1

2 (1 − κ) N




c
seiφ

−c
−seiφ




∝ 1
2 (1 + κ) uR +

1
2 (1 − κ) uL, (6.38)

where uR and uL are chiral eigenstates with γ5uR =+ uR and γ5uL =− uL. From
(6.38) it is clear that it is only in the limit where E+m (when κ→ 1) that the
helicity eigenstates are equivalent to the chiral eigenstates. Because only certain
combinations of chiral states give non-zero contributions to the QED matrix ele-
ment, in the ultra-relativistic limit only the corresponding helicity combinations
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!Fig. 6.10 The helicity combinations at the QED vertex which give non-zero four-vector currents in the limit E+m.

contribute to the QED interaction. The chiral nature of the QED interaction there-
fore explains the previous observation that only four of the sixteen possible helicity
combinations contribute to the e+e− → µ+µ− annihilation process at high energies.

The correspondence between the helicity and chiral eigenstates in the ultra-
relativistic limit implies that for E+m, the four-vector currents written in terms of
the helicity states,

u↓γ µu↑ = u↑γ µu↓ = v↓γ µv↑ = v↑γ µv↓ = v↓γ µu↓ = v↑γ µu↑ = 0,

are all zero. Therefore in the high-energy QED processes, only the helicity combi-
nations shown in Figure 6.10 give non-zero currents. Consequently, the helicity of
the particle leaving the QED vertex is that same as that entering it and helicity is
effectively “conserved” in high-energy interactions.

6.5 *Trace techniques

In the calculation of the e+e−→ µ+µ− cross section described above, the individual
matrix elements were calculated for each helicity combination using the explicit
representations of the spinors and the γ-matrices. The resulting squares of the
matrix elements were then summed and averaged. This approach is relatively sim-
ple and exposes the underlying physics of the interaction. For these reasons, the
majority of the calculations that follow will adopt the helicity amplitude approach.
In the limit where the masses of the particles can be neglected, these calculations
are relatively straightforward as they involve only a limited number of helicity com-
binations. However, when the particle masses can not be neglected, it is necessary
to consider all possible spin combinations. In this case, calculating the individual
helicity amplitudes is not particularly efficient (although it is well suited to com-
putational calculations). For more complicated processes, analytic solutions are
usually most easily obtained using a powerful technique based on the traces of
matrices and the completeness relations for Dirac spinors.

6.5.1 Completeness relations

Sums over the spin states of the initial- and final-state particles can be calcu-
lated using the completeness relations satisfied by Dirac spinors. The completeness
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relations are defined by the sum over the two possible spin states of the tensor
formed from the product of a spinor with its adjoint spinor,

2∑

s=1

us(p)us(p),

where the sum is for two orthogonal spin states. The sum can be performed using
the helicity basis or the spinors u1 and u2, both of which form a complete set of
states. Here it is most convenient to work with the spinors u1(p) and u2(p), in which
case the completeness relation is

2∑

s=1

us(p)us(p) ≡ u1(p)u1(p) + u2(p)u2(p).

In the Dirac–Pauli representation, the spinors u1 and u2 can be written as

us(p) =
√

E + m




φs

σ·p
E+mφs


 with φ1 =

(
1
0

)
and φ2 =

(
0
1

)
.

Using (σ · p)† = σ · p, the adjoint spinor can be written

us = u†sγ
0 =
√

E + m
(
φT

s φT
s

(σ·p)†

E+m

) ( I 0
0 −I

)
=
√

E + m
(
φT

s −φT
s

(σ·p)
E+m

)
,

where I is the 2×2 identity matrix. Hence the completeness relation can be written

2∑

s=1

us(p)us(p) = (E + m)
2∑

s=1




φsφT
s − σ·pE+mφsφT

s
σ·p
E+mφsφT

s − (σ·p)2

(E+m)2φsφT
s


 ,

which using

2∑

s=1

φsφ
T
s =

(
1 0
0 1

)
and (σ · p)2 = p2 = (E + m)(E − m),

gives

2∑

s=1

us(p)us(p) =
(

(E + m)I −σ · p
σ · p (−E + m)I

)
. (6.39)

Equation (6.39) can be written in terms of the γ-matrices as

2∑

s=1

usus = (γ µpµ + mI) = /p + m, (6.40)
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where the “slash” notation is shorthand for /p ≡ γ µpµ = Eγ0 − pxγ1 − pyγ2 − pzγ3.
Repeating the above derivation, it is straightforward to show that the antiparticle
spinors satisfy the completeness relation,

2∑

r=1

vrvr = (γ µpµ − mI) = /p − m, (6.41)

where the mass term enters with a different sign compared to the equivalent expres-
sion for particle spinors.

6.5.2 Spin sums and the trace formalism

The QED, QCD and weak interaction vertex factors all can be written in the form
u(p) Γ u(p′), where Γ is a 4 × 4 matrix constructed out of one or more Dirac γ-
matrices. In index notation, this product of spinors and γ-matrices can be written

u(p) Γ u(p′) = u(p) j Γji u(p′)i,

where the indices label the components and summation over repeated indices is
implied. It should be noted that u(p) Γ u(p′) is simply a (complex) number.1 For
the QED vertex Γ= γ µ and the matrix element for the process e+e−→ µ+µ− is
given by (6.3),

M f i = −
e2

q2

[
v(p2)γ µu(p1)

]
gµν

[
u(p3)γνv(p4)

]

= − e2

q2

[
v(p2)γ µu(p1)

] [
u(p3)γµv(p4)

]
, (6.42)

where summation over the index µ is implied. The matrix element squared |M f i|2
is the product ofM f i andM†f i, with

M†f i =
e2

q2

[
v(p2)γνu(p1)

]† [u(p3)γνv(p4)
]† ,

where the index ν has been used for this summation to avoid confusion with the
index µ in the expression forM f i given in (6.42). Because the components of the

1 If this is not immediately obvious, consider the 2 × 2 case of cTBa, where the equivalent product
can be written as

(c1, c2)
(

B11 B12

B22 B22

) (
a1

a2

)
= c1B11a1 + c1B12a2 + c2B21a1 + c2B22

= c jBjiai,

which is just the sum over the product of the components of a, c and B.
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currents are simply numbers, the order in which they are written does not matter.
Hence |M f i|2 =M f iM†f i can be written

|M f i|2 =
e4

q4

[
v(p2)γ µu(p1)

] [
v(p2)γνu(p1)

]† ×
[
u(p3)γµv(p4)

] [
u(p3)γνv(p4)

]† .

The spin-averaged matrix element squared can therefore be written

〈|M f i|2〉 =
1
4

∑

spins

|M f i|2

=
e4

4q4

∑

s,r

[
vr(p2)γ µus(p1)

] [
vr(p2)γνus(p1)

]†

×
∑

s′,r′

[
us′(p3)γµvr

′
(p4)

]
,
[
us′(p3)γνvr

′
(p4)

]†
, (6.43)

where s, s′, r and r′ are the labels for the two possible spin states (or equivalently
helicity states) of the four spinors. In this way, the calculation of the spin-averaged
matrix element squared has been reduced to the product of two terms of the form

∑

spins

[
ψΓ1φ

] [
ψΓ2φ

]†
, (6.44)

where Γ1 and Γ2 are two 4 × 4 matrices, which for this QED process are Γ1 = γ µ

and Γ2 = γν. Equation (6.44) can be simplified by writing

[
ψΓφ

]†
=

[
ψ†γ0Γφ

]†
= φ†Γ†γ0†ψ = φ†γ0γ0Γ†γ0ψ = φγ0Γ†γ0ψ,

and hence
[
ψΓφ

]† ≡ φ Γψ with Γ = γ0Γ†γ0.

From the properties of the γ-matrices given (4.33) and (4.34), it can be seen that
γ0γ µ

†
γ0 = γ µ for all µ. Hence for the QED vertex, with Γ = γ µ,

Γ = γ0γ µ†γ0 = γ µ = Γ.

Although not shown explicitly, it should be noted that Γ = Γ also holds for the QCD
and weak interaction vertices. Hence for all of the Standard Model interactions,

[
ψΓφ

]† ≡ φ Γψ. (6.45)
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Using (6.45), the spin-averaged matrix element squared for the process e+e−→
µ+µ− of (6.43) can be written

∑

spins

|M f i|2 =
e4

q4

∑

s,r

[
vr(p2)γ µus(p1)

] [
us(p1)γνvr(p2)

]

×
∑

s′,r′

[
us′(p3)γµvr

′
(p4)

] [
v r′(p4)γνus′(p3)

]
. (6.46)

Denoting the part of (6.46) involving the initial-state e+ and e− spinors by the
tensor L µν(e) and writing the matrix multiplication in index form gives

L µν(e) =

2∑

s,r=1

vrj(p2)γ µjiu
s
i (p1) us

n(p1)γνnmv
r
m(p2) . (6.47)

Since all the quantities in (6.47) are just numbers, with the indices keeping track of
the matrix multiplication, this can be written as

L µν(e) =




2∑

r=1

vrm(p2)vrj(p2)







2∑

s=1

us
i (p1)us

n(p1)


 γ
µ
jiγ

ν
nm . (6.48)

Using the completeness relations of (6.40), the electron tensor of (6.48) becomes

Lµν(e) = (/p2 − m)m j(/p1 + m)inγ
µ
jiγ

ν
nm, (6.49)

where (/p2−m)m j is the (m j)th element of the 4× 4 matrix (/p2−mI). Equation (6.49)
can be put back into normal matrix multiplication order to give

Lµν(e) = (/p2 − m)m jγ
µ
ji(/p1 + m)inγ

ν
nm

=
[
(/p2 − m)γ µ(/p1 + m)γν

]
mm

= Tr
(
[/p2 − m]γ µ[/p1 + m]γν

)
. (6.50)

Consequently, the sum over spins of the initial-state particles has been replaced by
the calculation of the traces of 4 × 4 matrices, one for each of the sixteen possible
combinations of the indices µ and ν. The order in which the two /p terms appear
in trace calculation of (6.50) follows the order in which the spinors appear in the
original four-vector currents; the /p term associated with the adjoint spinor appears
first (although traces are unchanged by cycling the elements). In constructing the
traces associated with a Feynman diagram it is helpful to remember that the order
in which different terms appear can be obtained by following the arrows in the
fermion currents in the backwards direction. Writing the sum over the spins of
final-state particles of (6.46) as the muon tensor,

L(µ)
µν =

∑

s′,r′

[
us′(p3)γµvr

′
(p4)

] [
v r′(p4)γνus′(p3)

]
,
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and expressing this in terms of a trace, leads to

∑

spins

|M f i|2 =
e4

q4L
µν
(e)L

(µ)
µν

=
e4

q4 Tr
(
[/p2 − m]γ µ[/p1 + m]γν

)
× Tr

(
[/p3 + M]γµ[/p4 − M]γν

)
,

(6.51)

where the masses of the initial- and final-state particles are respectively written as
m and M.

6.5.3 Trace theorems

The calculation of the spin-summed matrix element has been reduced to a prob-
lem of calculating traces involving combinations of γ-matrices. At first sight this
appears a daunting task, but fortunately there are a number of algebraic “tricks”
which greatly simplify the calculations. Firstly, traces have the properties

Tr (A + B) ≡ Tr (A) + Tr (B) , (6.52)

and are unchanged by cycling the order of the elements

Tr (AB . . .YZ) ≡ Tr (ZAB . . .Y) . (6.53)

Secondly, the algebra of the γ-matrices is defined by the anticommutation relation
of (4.33), namely

γ µγν + γνγ µ ≡ 2gµνI, (6.54)

where the presence of the 4 × 4 identity matrix has been made explicit. Taking the
trace of (6.54) gives

Tr
(
γ µγν

)
+ Tr

(
γνγ µ

)
= 2gµν Tr (I) ,

which using Tr (AB) =Tr (BA) becomes Tr (γ µγν) = gµν Tr (I), and hence

Tr
(
γ µγν

)
= 4gµν. (6.55)

The trace of any odd number of γ-matrices can be shown to be zero by inserting
γ5γ5 = I into the trace. For example, consider the trace of any three γ-matrices

Tr
(
γ µγνγ ρ

)
= Tr

(
γ5γ5γ µγνγ ρ

)

= Tr
(
γ5γ µγνγ ργ5

)
(traces are cyclical)

= −Tr
(
γ5γ5γ µγνγ ρ

)
(since γ5γ µ = −γ µγ5)
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where the last line follows from commuting γ5 through the three γ-matrices, each
time introducing a factor of −1. Hence Tr (γ µγνγ ρ) =−Tr (γ µγνγ ρ), which can
only be true if

Tr
(
γ µγνγ ρ

)
= 0. (6.56)

The same argument can be applied to show that the trace of any odd number of
γ-matrices is zero.

Finally, the trace of four γ-matrices can be obtained from (6.54) which allows
γ aγ b to be written as 2g ab − γ bγ a and repeated application of this identity gives

γ µγνγ ργσ = 2gµνγ ργσ − γνγ µγ ργσ

= 2gµνγ ργσ − 2gµργνγσ + γνγ ργ µγσ

= 2gµνγ ργσ − 2gµργνγσ + 2gµσγνγ ρ − γνγ ργσγ µ

⇒ γ µγνγ ργσ + γνγ ργσγ µ = 2gµνγ ργσ − 2gµργνγσ + 2gµσγνγ ρ. (6.57)

Taking the trace of both sides of (6.57) and using the cyclic property of traces

2Tr
(
γ µγνγ ργσ

)
= 2gµν Tr

(
γ ργσ

) − 2gµρ Tr
(
γνγσ

)
+ 2gµσ Tr

(
γνγ ρ

)
,

and using (6.55) for the trace of two γ-matrices gives the identity

Tr
(
γ µγνγ ργσ

)
= 4gµνg ρσ − 4gµρgνσ + 4gµσgνρ. (6.58)

The full set of trace theorems, including those involving γ5 = iγ0γ1γ2γ3, are:

(a) Tr (I) = 4;

(b) the trace of any odd number of γ-matrices is zero;

(c) Tr (γ µγν) = 4gµν;

(d) Tr (γ µγνγ ργσ) = 4gµνg ρσ − 4gµρgνσ + 4gµσgνρ;

(e) the trace of γ5 multiplied by an odd number of γ-matrices is zero;

(f) Tr
(
γ5

)
= 0;

(g) Tr
(
γ5γ µγν

)
= 0; and

(h) Tr
(
γ5γ µγνγ ργσ

)
= 4iε µνρσ, where ε µνρσ is antisymmetric under the inter-

change of any two indices.

Armed with these trace theorems, expressions such as that of (6.51) can be eval-
uated relatively easily; it is worth going through one example of a matrix element
calculation using the trace methodology in gory detail.
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e- f

m

e+

g

p2

p1

p4

p3

ν

f!Fig. 6.11 The lowest-order QED Feynman diagram for e+e− → ff.

6.5.4 Electron–positron annihilation revisited

Consider the process e+e−→ ff, shown in Figure 6.11, where f represents any of the
fundamental spin-half charged fermions. In the limit where the electron mass can
be neglected, but the masses of the final-state fermions cannot, the spin-averaged
matrix element squared is given by (6.51) with m= 0 and M =mf ,

〈|M f i|2〉 =
1
4

∑

spins

|M f i|2 =
Q2

f e
4

4q4 Tr
(
/p2γ

µ
/p1γ

ν
)

Tr
(
[/p3 + m f ]γµ[/p4 − m f ]γν

)
.

(6.59)

This can be evaluated by writing /p1 = γ
σp1σ and /p2 = γ

ρp2ρ, in which case the first
trace in (6.59) can be written as

Tr
(
/p2γ

µ
/p1γ

ν
)
= p2ρp1σTr

(
γ ργ µγσγν

)

= 4p2ρp1σ(g ρµgσν − g ρσgµν + g ρνgµσ)

= 4p µ2 pν1 − 4gµν(p1 ·p2) + 4pν2 p µ1 .

Since the trace of an odd number of γ-matrices is zero and Tr (A+ B) =Tr (A) +
Tr (B), the second trace in (6.59) can be written

Tr
(
[/p3 + mf]γµ[/p4 − mf]γν

)
= Tr

(
/p3γµ/p4γν

)
− m2

f Tr
(
γµγν

)
(6.60)

= 4p3µp4ν − 4gµν(p3 ·p4) + 4p3νp4µ − 4m2
f gµν.

(6.61)

Hence, the spin-averaged matrix element squared is given by

〈|M f i|2〉 = 16
Q2

f e4

4q4

[
p µ2 pν1 − gµν(p1 ·p2) + pν2 p µ1

]

×
[
p3µp4ν − gµν(p3 ·p4) + p3νp4µ − m2

f gµν
]
. (6.62)

This expression can be simplified by contracting the indices, where for example

gµνgµν = 4, p µ2 pν1gµν = (p1 ·p2) and p µ2 pν1 p3µp4ν = (p2 ·p3)(p1 ·p4).
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Thus the twelve terms of (6.62) become

〈|M f i|2〉 = 4
Q2

f e4

q4

[
(p1 ·p4)(p2 ·p3) − (p1 ·p2)(p3 ·p4) + (p1 ·p3)(p2 ·p4)

− (p1 ·p2)(p3 ·p4) + 4(p1 ·p2)(p3 ·p4) − (p1 ·p2)(p3 ·p4)

+ (p1 ·p3)(p2 ·p4) − (p1 ·p2)(p3 ·p4) + (p1 ·p4)(p2 ·p3)

−m2
f (p1 ·p2) + 4m2

f (p1 ·p2) − m2
f (p1 ·p2)

]
,

which simplifies to

〈|M f i|2〉 = 4
Q2

f e4

q4

[
2(p1 ·p3)(p2 ·p4) + 2(p1 ·p4)(p2 ·p3) + 2m2

f (p1 ·p2)
]
.

In the limit where the electron mass is neglected, the four-momentum squared of
the virtual photon is

q2 = (p1 + p2)2 = p2
1 + p2

2 + 2(p1 ·p2) ≈ 2(p1 ·p2),

and therefore

〈|M f i|2〉 = 2
Q2

f e4

(p1 ·p2)2

[
(p1 ·p3)(p2 ·p4) + (p1 ·p4)(p2 ·p3) + m2

f (p1 ·p2)
]
. (6.63)

If the final-state fermion mass is also neglected, (6.63) reduces to the expression
for the spin-averaged matrix element squared of (6.25), which was obtained from
the helicity amplitudes.

In the above calculation, neither the explicit form of the spinors nor the specific
representation of the γ-matrices is used. The spin-averaged matrix element squared
is determined from the completeness relations for the spinors and the commutation
and Hermiticity properties of the γ-matrices alone.

e+e− → ff annihilation close to threshold
The spin-averaged matrix element squared of (6.63) can be used to calculate the
cross section for e+e−→ ff close to threshold. Working in the centre-of-mass frame
and writing the momenta of the final-state particles as p= βE, where β= v/c, the
four-momenta of the particles involved can be written

p1 = (E, 0, 0,+E),

p2 = (E, 0, 0,−E),

p3 = (E,+βE sin θ, 0,+βE cos θ),

p4 = (E,−βE sin θ, 0,−βE cos θ),
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and the relevant four-vector scalar products are

p1 ·p3 = p2 ·p4 = E2(1 − β cos θ),

p1 ·p4 = p2 ·p3 = E2(1 + β cos θ),

p1 ·p2 = 2E2.

Substituting these expressions into (6.63) gives

〈|M f i|2〉 = 2
Q2

f e4

4E4

[
E4(1 − β cos θ)2 + E4(1 + β cos θ)2 + 2E2m2

f

]

= Q2
f e4

(
1 + β2 cos2 θ +

E2 − p2

E2

)

= Q2
f e4

(
2 + β2 cos2 θ − β2

)
. (6.64)

The differential cross section is then obtained by substituting the spin-averaged
matrix element squared of (6.64) into the cross section formula of (3.50) to give

dσ
dΩ
=

1
64π2s

p
E
〈|M f i|2〉

=
1
4s
βQ2

fα
2
(
2 + β2 cos2 θ − β2

)
,

where e2 = 4πα. The total cross section is obtained by integrating over dΩ, giving

σ(e+e− → ff) =
4πα2Q2

f

3s
β

(
3 − β2

2

)
with β2 =


1 −

4m2
f

s


. (6.65)

Close to threshold, the cross section is approximately proportional to the velocity
of the final state particles. Figure 6.12 shows the measurements of the total e+e−→
τ+τ− cross section at centre-of-mass energies just above threshold. The data are in
good agreement with the prediction of (6.65). In the relativistic limit where β→ 1,
the total cross section of (6.65) reduces to the expression of (6.24).

6.5.5 Electron–quark scattering

The main topic of the next two chapters is electron–proton scattering. In the case
of inelastic scattering where the proton breaks up, the underlying QED process
is t-channel scattering of electrons from the quarks inside the proton. In the limit
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3.5 4 4.5 5
0
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0.2

τ+ τ
- /

µ+ µ
-

s (GeV)√!Fig. 6.12 The measured ratio of number of identi)ed e+e−→ τ+τ− events to the number of e+e−→ µ+µ− at
centre-of-mass energies close to the e+e−→ τ+τ− threshold. The curve shows the β(3− β2) behaviour
of (6.65). The normalisation depends on the e-ciency for identifying τ+τ− events and a small background
component is included. Adapted from Bacino et al. (1978).

e- e-

m

q q

g

p2

p1

p4

p3

ν!Fig. 6.13 The lowest-order Feynman diagram for QED t-channel electron–quark scattering process.

where the masses of the electron and the quark can be neglected, it is relatively
straightforward to obtain the expressions for the four non-zero matrix elements
using the helicity amplitude approach (see Problem 6.7). However, if the particle
masses cannot be neglected, which is the case for low-energy electron–proton scat-
tering, the spin-averaged matrix element is most easily calculated using the trace
formalism introduced above.

The QED matrix element for the Feynman diagram of Figure 6.13 is

M f i =
Qqe2

q2

[
u(p3)γ µu(p1)

]
gµν

[
u(p4)γνu(p2)

]
.

Noting the order in which the spinors appear in the matrix element (working back-
wards along the arrows on the fermion lines), the spin-summed matrix element
squared is given by
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∑

spins

|M f i|2 =
Q2

qe4

q4 Tr
(
[/p3 + me]γ µ[/p1 + me]γν

)
Tr

(
[/p4 + mq]γµ[/p2 + mq]γν

)
.

(6.66)

Apart from the signs of the mass terms, which are all positive since only particles
are involved, the expressions in the traces of (6.66) have the same form as those
of (6.60) and can therefore be evaluated using the result of (6.61) with the signs of
the m2 terms reversed, giving

∑

spins

|M f i|2 =
16 Q2

qe4

q4

(
p µ3 pν1 − gµν(p1 ·p3) + p µ1 pν3 + m2

eg
µν

)

×
(
p4µp2ν − gµν(p2 ·p4) + p2µp4ν + m2

qgµν
)
.

From this expression, it follows that

〈|M f i|2〉 =
1
4

∑

spins

|M f i|2

=
8Q2

qe4

(p1 − p3)4 ×
[
(p1 ·p2)(p3 ·p4) + (p1 ·p4)(p2 ·p3)

−m2
e(p2 ·p4) − m2

q(p1 ·p3) + 2m2
em2

q

]
. (6.67)

In the limit where the masses can be neglected, (6.67) reduces to

〈|M f i|2〉 = 2Q2
qe4

(
s2 + u2

t2

)
. (6.68)

Apart from the factor Q2
q from the quark charge, this spin-averaged matrix element

squared for the t-channel scattering process of eq→ eq is identical to the corre-
sponding expression for e+e−→ µ+µ− annihilation of (6.26) with s and t inter-
changed. The similarity between these two expressions is to be expected from the
closeness of the forms of the fermion currents for the two processes. This property,
known as crossing symmetry, can be utilised to obtain directly the expression for
the spin-averaged matrix element squared for a t-channel process from that of the
corresponding s-channel process.

6.5.6 Crossing symmetry

The calculations of the spin-averaged squared matrix elements for the s-channel
e+e−→ ff annihilation process and the t-channel e−f→ e−f scattering processes,
shown in Figure 6.14, proceed in similar way. In the annihilation process, the two
currents are

j µe = v(p2)γ µu(p1) and j νf = u(p3)γνv(p4), (6.69)
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f!Fig. 6.14 The Feynman diagrams for QED s-channel annihilation process e+e−→ ff and the QED t-channel scattering
process e−f→ e−f.

and for the scattering process the corresponding two currents are

j µe = u(p3)γ µu(p1) and j νf = u(p4)γνu(p2). (6.70)

By making the replacement u(p1)→ u(p1), v(p2)→ u(p3), u(p3)→ u(p4) and
v(p4)→ u(p2) the currents in the annihilation process (6.69) correspond to those
for the scattering process (6.70). In the calculation of traces, this implies making
the replacement, p1→ p1, p2→ p3, p3→ p4 and p4→ p2. This accounts for the
order in which the spinors appear in the four-vector currents, but does not account
for the replacement of an antiparticle spinor with a particle spinor. From the com-
pleteness relationships of (6.40) and (6.41), the spin sums lead to a term in the trace
of [/p+m] for particles and [/p−m] for antiparticles. So when a particle is replaced
by an antiparticle, the sign of the mass term in the trace is reversed. Alternatively,
the effect of changing the relative sign between /p and m, can be achieved by chang-
ing the sign of the four-momentum when a particle in one diagram is replaced by
an antiparticle in the other diagram. Hence, crossing symmetry implies that the
matrix element for e−f→ e−f can be obtained the matrix element for e+e−→ ff by
making the substitutions,

p1 → p1, p2 → −p3, p3 → p4 and p4 → −p2.

The effect on the Mandelstam variables is s2→ t2, t2→ u2 and u2→ s2, and with
these replacements the matrix element for the s-channel annihilation process
e+e−→ ff of (6.26) transforms to the matrix element for the t-channel scattering
process e−f → e−f of (6.68)

〈|M f i|2〉s = 2Q2
f e4

(
t2 + u2

s2

)
←→ 〈|M f i|2〉t = 2Q2

f e4
(
u2 + s2

t2

)
.
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Summary

In this chapter, the e+e−→ µ+µ− annihilation process has been used to introduce the
techniques used to perform lowest-order QED calculations. A number of important
concepts were introduced. The treatment of the different spin states of the initial-
and final-state particles leads to the introduction of the spin-averaged matrix ele-
ment squared given by

〈|M f i|2〉 =
1
4

∑

spins

|M|2,

where the sum extends over the sixteen orthogonal spins states. In the limit where
the masses of the particles were neglected, only four of the possible helicity combi-
nations give non-zero matrix elements. This property is due to the chiral nature of
the QED interaction, where the left- and right-handed chiral states are eigenstates
of the γ5-matrix defined as

γ5 ≡ iγ0γ1γ2γ3.

Because of the φγ µψ form of the QED interaction vertex, certain combinations of
chiral currents are always zero, for example uRγ µuL = 0. In the limit E+m, the
helicity eigenstates correspond to the chiral eigenstates and twelve of the sixteen
possible helicity combinations in the process e+e−→ µ+µ− do not contribute to the
cross section and helicity is effectively conserved in the interaction. The resulting
spin-averaged matrix element squared for e+e−→ µ+µ− is

e+e− → µ+µ− : 〈|M f i|2〉 = 2e4
(
t2 + u2

s2

)
. (6.71)

In the starred section of this chapter, the method of using traces to perform
spin sums was introduced and was then used to calculate the matrix elements for
e+e−→ ff annihilation and e−q→ e−q scattering. In the massless limit, the spin-
averaged matrix element squared for electron–quark scattering was shown to be

e−q→ e−q : 〈|M f i|2〉 = 2Q2
qe4

(
s2 + u2

t2

)
. (6.72)


