

Gaussian processes and Bayesian Optimization

Prof. Dr. Nico Serra - University of Zurich

Sampling from a distribution

- We know how to draw samples from a n-dimensional distribution
- We also know how to draw from an unnormalized distribution (MCMC)
- Each point is a n-dim vector

Sampling functions

- Now we want to approximate data in a non-parameteric way
- We want to sample from functions

Sampling from functions

Sampling from a function

We want to sample from all curves passing by the points I observe

Definition of Gaussian process:

every finite set of function values has a multivariate normal distribution

 $\forall n \quad \forall (x_1, \dots, x_n) \quad (f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$

Sampling for the points I can obtain continue curves because the correlations among the different points is not zero, but it is a function dependent on x

Sampling from a function

x,y = training data $x^* = points for which I want to predict y^*$ To sample from general curves I need a mean and a variance, the general form is:

$$\begin{cases} \mu = K^* K^{-1} y \\ \mathbb{V} = K^{**} - K^* \cdot K^{-1} K^{*T} \end{cases}$$

$$\begin{array}{l} \mathsf{K}(\mathsf{X},\mathsf{X}) = \text{matrix correlation of } \mathsf{X},\mathsf{X}^* \\ \mathsf{K}^*(\mathsf{X}^*,\mathsf{X}) = \text{matrix correlation of } \mathsf{X},\mathsf{X}^* \\ \mathsf{K}^*(\mathsf{X}^*,\mathsf{X}) = \text{matrix correlation of } \mathsf{X},\mathsf{X}^* \\ \end{array}$$

$$\begin{split} \mathsf{NB:} \ \mu = y \ and \ \ \mathbb{V} = 0 \quad f \ or \ K = K^* \ , \ i.e. \ x^* = x \\ f(x) \sim GP(m(x) \ , \ k(x, x') \) \\ \begin{cases} m(x) = 0 \\ k(x, x') = exp\left\{-\frac{1}{2}\|x - x'\|^2\right\} = \begin{cases} 1 \quad f \ or \ \ x' \to x \\ 0 \quad f \ or \ \ \|x - x'\| \to \infty \end{cases} \quad K = \begin{pmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{cases} \end{split}$$

Bayesian Machine Learning

Sampling from a function

$$\begin{aligned} m(x) &= 0 \\ k(x, x') &= exp\left\{-\frac{1}{2}\|x - x'\|^2\right\} = \begin{cases} 1 & for \ x' \to x \\ 0 & for \ \|x - x'\| \to \infty \end{cases} \end{aligned}$$

$$K = \begin{pmatrix} 1 & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & 1 \end{pmatrix}$$

Drawing randomly from this distribution

Sampling from a function

We want to use the data we have to predict the data we do not have

$$\begin{pmatrix} y \\ y^* \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_X \\ \mu_{X^*} \end{pmatrix}, \begin{bmatrix} K(X,X) & K(X,X^*) \\ K(X,X^*) & K(X^*,X^*) \end{bmatrix} \right)$$

$$p(y^* | x, y) \sim \mathcal{N}(\mu_X + K^* K^{-1}(y - \mu_X), K^{**} - K^* K^{-1} K^*)$$

Bayesian Machine Learning

Example 1: white noise

$$f(x) \sim GP(m(x), k(x, x'))$$

m(x) = 0

$$\begin{cases} k(x,x') = \sigma^2 & if \ x = x' \\ 0 & otherwise \end{cases}$$

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

 $\mu = 0 \qquad \Sigma = \sigma^2 I$

Example 2: Constant

$f(x) \sim GP(m(x), k(x, x'))$	
m(x) = 0	
k(x, x') = C	05 - 04 - 03 -
$(f(x_1),\ldots,f(x_n))\sim\mathcal{N}(\mu,\Sigma)$	
$\mu = 0$ $\Sigma = \{C\}_{i,j=1}^{n,n}$	-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
$ \forall i \neq j \\ \operatorname{Corr}(f(x_i), f(x_j)) = \frac{\operatorname{Cov}(f(x_i), f(x_j))}{\sqrt{\operatorname{Var}(f(x_i))\operatorname{Var}(f(x_j))}} = \frac{C}{\sqrt{C}^2} = 1 $ $\Rightarrow f(x_i) = f(x_j) $	
$\operatorname{Var}(f(x_i)) = \operatorname{Var}(f(x_j)) = C, \mathbb{E}f(x_i)$	$f = \mathbb{E}f(x_j) = 0$

Example 3: RBF-kernel

$$f(x) \sim GP(m(x), k(x, x'))$$
$$m(x) = 0$$

if $||x_i - x_j|| \approx 0 \implies \Sigma_{ij} \approx \sigma^2 = \Sigma_{ii} = \Sigma_{jj} \implies f(x_i) \approx f(x_j)$ if $||x_i - x_j|| \gg 0 \implies \Sigma_{ij} \approx 0, f(x_i)$ and $f(x_j)$ are not correlated Bayesian Machine Learning

Other Kernels

Matern

Brownian

Bayesian Machine Learning

Adding Noise

Forcing data to pass exactly by the points, might be a too strong requirement, e.g. if you have noise or measurement errors on y

$$\begin{cases} y=f(x)+\varepsilon \\ \varepsilon \sim \mathcal{N}(0,\sigma^2) \\ f(x) \sim \mathcal{N}(0,K) \end{cases} \begin{pmatrix} y \\ y^* \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu_X \\ \mu_{X^*} \end{pmatrix}, \begin{bmatrix} K(X,X)+\sigma^2 I & K(X,X^*) \\ K(X,X^*) & K(X^*,X^*) \end{bmatrix}\right)$$

RBF-Kernel

$\sigma = 1 \ell = 1$	noise=0.01
------------------------	------------

$\sigma = 1$ $\ell = 1$ noise=0.5

14

University of Zurich[™]

Kernel Combination

It is possible to combine the kernels, e.g. by summing

$$k(x,x') = \sigma^2[x = x'] + k(x,x') = x \cdot x' + k(x,x') = \sigma^2 \exp\left(-\frac{(x-x')^2}{2r^2}\right)$$

Bayesian view

Let's start with a linear family of curves

$$\begin{cases} y = \omega^{T}x + \varepsilon \\ \varepsilon \sim \mathcal{N}(0, \sigma^{2}) \\ f(x) \sim \mathcal{N}(0, K) \end{cases}$$

$$\pi(\omega) = \mathcal{N}(0, \Sigma_{p}) \longrightarrow \text{Gaussian Prior}$$

$$\mathcal{L} \propto \prod_{i} exp\left(\frac{1}{2\sigma} \|y_{i} - x_{i}w\|^{2}\right) = \mathcal{N}(X\omega, \sigma^{2}I) \checkmark \text{Gaussian Likelihood}$$

$$p(\omega|X, y) = \mathcal{N}(\omega|X, y) \pi(\omega) \longrightarrow \text{Gaussian Posterior}$$

2.0 -

Bayesian view

Once I have the posterior, I have found the best linear combination

Of course using linear functions is a limitation, however we can use the same technique with an arbitrary family of curves

Bayesian view

Bayesian view

More expressive basis fits better data...

Bayesian view

More expressive basis fits better data... but could lead to larger uncertainty when extrapolating

- Normally in addition to the network parameters (that you optimize with gradient descent) you have a set of hyperparameters
- Finding good hyperparameters might make the difference between a method working or not-working at all
- There are several strategies you can use to optimize the hyperparameters, e.g. random search
- Bayesian Optimization is an efficient strategy to optimize hyper-parameters

Acquisition Function

- We need a criterion to decide which point I will explore next
- To make this decision we should look at the prediction and also at the uncertainty, e.g. lower coefficient bound, entropy search, expected improvement, ...

$$a(x) = f(x) - \kappa \cdot \sigma(f(x))$$

Bayesian Optimization Example

Bayesian Machine Learning

Bayesian Optimization

Bayesian Machine Learning

Conclusions

- We have learned how to approximate functions with Gaussian Processes
- This is a non-parametric technique, equivalent to KNN for functions
- GP allows to evaluate uncertainties
- We have used 1-dimensional function because it is easier to visualize, but all we said is valid in n-dimensions
- GP are very efficient up to 20-dim
- One very interesting application for Machine learning is bayesian optimization