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Sampling from a distribution
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- We know how to draw samples from a n-dimensional distribution
- We also know how to draw from an unnormalized distribution (MCMC)
- Each point is a n-dim vector 



Sampling functions
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- Now we want to approximate data in a non-parameteric way
- We want to sample from functions



Sampling from functions 
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Each function can be thought as 
a discrete collection of points

Each line is a sample from the 
process 



Sampling from a function
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We want to sample from all curves 
passing by the points I observe

Sampling for the points I can obtain continue curves because the 
correlations among the different points is not zero, but it is a function 
dependent on x



Sampling from a function 
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x,y = training data
x* = points for which I want to predict y* 
To sample from general curves I need a mean and a variance, the 
general form is:

K(X,X) = matrix correlation of X,X
K** (X*,X*)= matrix correlation X*,X*
K*(X*,X) = matrix correlation of X,X*

NB:



Sampling from a function 
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Drawing randomly from this distribution

GP Prior



Sampling from a function 
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We want to use the data we have to predict the data we do not have 



Example 1: white noise
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Example 2: Constant
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Example 3: RBF-kernel
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Other Kernels
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Matern Brownian

Polynomial Periodic



Adding Noise
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Forcing data to pass exactly by the points, might be a too strong 
requirement, e.g. if you have noise or measurement errors on y



RBF-Kernel
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noise=0.011 1 noise=0.51 1

noise=0.010.01 1 noise=0.011 0.01



Kernel Combination
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It is possible to combine the kernels, e.g. by summing 

+ +



Bayesian view 
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Let’s start with a linear family of curves

Gaussian Prior

Gaussian Likelihood

Gaussian Posterior



Bayesian view 
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Once I have the posterior, I have found the best linear combination

Of course using linear functions is a limitation, however we can use 
the same technique with an arbitrary family of curves



Bayesian view 
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Bayesian view 
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More expressive basis fits better data… 



Bayesian view 
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More expressive basis fits better data… but could lead to larger 
uncertainty when extrapolating



Bayesian Optimization
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Bayesian Optimization
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- Normally in addition to the network parameters (that you optimize 
with gradient descent) you have a set of hyperparameters 

- Finding good hyperparameters might make the difference 
between a method working or not-working at all

- There are several strategies you can use to optimize the 
hyperparameters, e.g. random search

- Bayesian Optimization is an efficient strategy to optimize 
hyper-parameters



Bayesian Optimization
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Initial Sampling

Optimization 
(e.g. GD)

Training of 
Gaussian Process

Evaluation of Acquisition 
Function

Deciding on next point to 
evaluate or stop



Acquisition Function

Course on Machine Learning

24Bayesian Machine Learning

- We need  a criterion to decide which point I will explore next
- To make this decision we should look at the prediction and also at the 

uncertainty, e.g. lower coefficient bound, entropy search, expected 
improvement, ...



Bayesian Optimization Example
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Bayesian Optimization
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Bayesian Optimization
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Conclusions
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- We have learned how to approximate functions with Gaussian Processes

- This is a non-parametric technique, equivalent to KNN for functions

- GP allows to evaluate uncertainties

- We have used 1-dimensional function because it is easier to visualize, 
but all we said is valid in n-dimensions

- GP are very efficient up to 20-dim

- One very interesting application for Machine learning is bayesian 
optimization


