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We know how to draw samples from a n-dimensional distribution

We also know how to draw from an unnormalized distribution (MCMC)
- Each point is a n-dim vector
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Sampling functions

f(x)

2.0 10 20

f(X) GP(M(X) k(x X))

- Now we want to approximate data in a non-parameteric way
- We want to sample from functions
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Sampling from functions

Each function can be thought as | =
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a discrete collection of points \ .
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Sampling from a function

We want to sample from all curves —
passing by the points | observe . /

Definition of Gaussian process:
every finite set of function values has a multivariate normal distribution

Vn Y(z1,....%n) (F(@1)se:er F(En)) ~N(u, X)

Sampling for the points | can obtain continue curves because the
correlations among the different points is not zero, but it is a function
dependent on x
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Sampling from a function

X,y = training data
x* = points for which | want to predict y*
To sample from general curves | need a mean and a variance, the

general form is:
K(X,X) = matrix correlation of X, X

u=K*K~ly K** (X*,X*)= matrix correlation X*,X*
Vek** — g*. k-1g*T K*(X*,X) = matrix correlation of X,X*

NB: u=yand V=0 forK=K" ,i.e.x" =x
f(x)~GP(m(x), k(x, x"))
[ m(x) =0

k(x,x') =€XP{— %le— X'||2}=[

I for x'-x

0 for [li—x'l|l— oo \k(xn,xl) k(xn,xn))
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Sampling from a function

( m(x) =0

k()C,x’) zexp[_ %"x_xvllz]:[ 1 fOI" X =X K=

0 for |x=x'||- o

\

Drawing randomly from this distribution

— GP Prior
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Sampling from a function

We want to use the data we have to predict the data we do not have
y Hx K(x,x) Kk(x,x*)
~ N ,
v Mo k(x,x*) k(x*,x*)

ply"1xy) ~ Wyt KK (= py) K™ ° = KTKIKT)
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Example 1: white noise

f(x) ~GP(m(x), k(x, x"))
m(x) =0

rk(x,)c') =02 if x=x'

L 0 otherwise

(f(ml)aaf(mn)) NN(:“’) 2)
pn=0 X=0°I
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Example 2: Constant
f(X) ~ GP(m(.X) > k(-xa x'))

m(x) =0
k(x, x')=C

(f(xl)a“ 7f(37n)) (,LL,E)
p=0 X={C}

"y
czor#r(i%w-) fa) = @) f@) O
“ \/Var (z;))Var(f(z;)) \/62 - = f(z:) = f(xa)

Var(f(z;)) = Var(f(z;)) = C, Ef(z:i) =Ef(z;) =0

2, 7=1
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Example 3: RBF-kernel

f(X) NGP(m(.X), k(-xa x'))
m(x) =0

if ”CL'Z — x3|| ~0 = Eij ~ 0‘2 =i dugg = ij = f(l’z) ~ f(xj)
if |z, — ;]| >0 = %;; =0, f(x;) and f(x;) are not correlated
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Other Kernels
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Adding Noise

Forcing data to pass exactly by the points, might be a too strong
requirement, e.g. if you have noise or measurement errors on y

y=f(0) e
o i(0.07) YL A [K(X,X)+021 K(X,X*) ]
£ ~ 0K y* pee |l k(x,x*)  K(x*,x*)

-25 . . . . . . =25
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RBF-Kernel
c=1 =1 noise=0.01 c=1 =1 noise=0.5
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Kernel Combination

It is possible to combine the kernels, e.g. by summing

K(z,0) = oz = ') + h@@) =20 + k) =otem(-E20)

6
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Bayesian view

Let’s start with a linear family of curves

y=wlx+ ¢
1 e~ ./V( 0, 02)
Lf()c) ~ N(0,K)
n(w) =/V( 0, X ) —>{ Gaussian Prior

\ Gaussian Likelihood
ronexp( Hy — X w”z =N Xw,021)”
l /

p(wlX,y) =N wlX,y) 7( ) —>| Gaussian Posterior
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Bayesian view

Once | have the posterior, | have found the best linear combination

Of course using linear functions is a limitation, however we can use
the same technique with an arbitrary family of curves
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Bayesian view

2

y=¢(x) +e¢
g~ /V(O,az)
S (x) ~AH(0,K)

A

rol_llexp(—”y — i) ”2)=,/V(gb(x
plwlX,y) =/ (wlX,y) z(®)
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Bayesian view

More expressive basis fits better data...

15 -1.0 -05 0.0 05 10 15
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Bayesian view

More expressive basis fits better data... but could lead to larger
uncertainty when extrapolating

-4 4
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Bayesian Optimization
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Bayesian Optimization
- Normally in addition to the network parameters (that you optimize

with gradient descent) you have a set of hyperparameters

- Finding good hyperparameters might make the difference
between a method working or not-working at all

- There are several strategies you can use to optimize the
hyperparameters, e.g. random search

- Bayesian Optimization is an efficient strategy to optimize
hyper-parameters
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Bayesian Optimization
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Acquisition Function

- We need a criterion to decide which point | will explore next
- To make this decision we should look at the prediction and also at the

uncertainty, e.g. lower coefficient bound, entropy search, expected
improvement, ...

a(x) =f(x) —k-o(f(x))
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Bayesian Optimization Example
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Bayesian Optimization
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Bayesian Optimization
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Conclusions

- We have learned how to approximate functions with Gaussian Processes
- This is a non-parametric technique, equivalent to KNN for functions
- GP allows to evaluate uncertainties

- We have used 1-dimensional function because it is easier to visualize,
but all we said is valid in n-dimensions

- GP are very efficient up to 20-dim

- One very interesting application for Machine learning is bayesian
optimization
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