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Optimization NN

Training:
- Forward pass with X
- Calculate error with respect to y
- Back propagation and stochastic gradient descent

{xj} ~ Umf(xl, Xoy Xos ooe s xN)
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Why Bayesian Networks

- Suppose now you have an image not belonging to
any of the class
- How would you want your network to classify it?
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Bayesian NN
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p(w) p(w|X,Y) -

Ep(w|x,v)P(Ys| 24, w)
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Bayesian Neural Network Optimization

- Bayesian neural networks can be seen as an ensemble of

neural networks
- The training consists of finding p( w!X, Y)
- The prediction give by

K
Ep(w|x,v)P(Ys|Tx, ) Z (ys|zss w®),  w* ~ p(w]X,Y)
k:
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Why Bayesian Networks

- QOut-of-domain point
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Bayesian Inference:

Data
Prior XY Posterior

p(w) p(w|X,Y)

Generally BNN have too many parameters to use efficiently
MCMC, suitable for Variational Inference

minK KL( g( wlA) llp( wlX,Y) )
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Training BNN

max, Z]Eq(w|,\)logp( o, w) — K L(q(w|))||p(w))

/ Data term Regularizer

Sample mini-batch
from data Sample weight from q (using
reparametrization trick)

Zlogp(yiﬂxiﬁ w=f(\€)), € ~ple) i~ Unif(l,...,N)
j=1
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Training BNN

q(w|X) = N(,0?), A={p,o}
Property of normal distribution:

w~N(p,0?) & w=p+oe e~N(0,1)

Gradient Descent

Anew — joid +77 Zlogp(y”kv“ﬂ w = f(A\% €)), i; ~ Unif(1,...,N)
el ~ p(e)
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Continue Learning
Task 1
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- BNN tend to keep better memory of previous task when
retrained for new tasks
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Advantages of BNN

- Prior of BNN can be use to encode desired properties of the
network

- Ensambling provides stability in the training

- Uncertainty estimation

- Better performance for online learning
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Variational
Autoencoders
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PCA

Unsupervise Learning:

Learn the structure of data
Learn features 1in data
- Learn probability distribution of data

- Compress data

PCA: Suppose that I want to represent my data with a single number I chose the
direction of greatest variance
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PCA

- The Principal Component Analysis (PCA) is a way of compressing the data

- If data are located on a linear manifold, it 1s convenient to “get rid” of
reduntant dimensions

- In order to find the best representation of data in d-dimensions (d < n), we
choose the d dimensions with greatest variance

- PCA consists of finding the d orthogonal dimensions with greatest variance,

equivalent to diagonalise an n-dimension matrix and take the d-dimensional
sub-matrix
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PCA

A PCA-like method can be applied with a simple ANN

ANN with 1 hidden layer and no — by i
(linear) activation function |

The dimension of the hidden layer 1s d<n

The loss consists in minimising the
square error

The hidden layer spans the same space l
at PCA, but the hq neurons are NOT

orthogonal / \7

ANN is not an efficient way toapply  g.xy — §
PCA o Flhiy - X,
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Autoencoders
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X'=f;lgX)]  Loss: L0 == [X;-X]
i=1
Autoencoders (AE) are trained to reproduce the input
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AE example
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For instance we can train the AE with the MNIST dataset to reproduce the
input
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The latent space 1s a compact representation of the MNIST dataset
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AE Latent Space

- We can visualise the latent space (in this case was a 2-d space)

- This 1s after training with MNIST, the color represent the different numbers
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Denoising Autoencoders

We can use AE to denoise the input: | & )
We apply a Mask (simulates noise) Loss : Z(¢.0) = N Z [Xi - Xz,]
We predict X, diving as input X =1
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AE Example
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Denoising with AE

Application of denoising AE to corrupted MNIST sample

Original input, corrupted data, reconstructed data

Copyright by opendeep.org
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VAE for Credit Risk

From AE to Variational Autoencoders
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VAE as variational inference
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VAE as variational inference

ZI
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NB: When lifting a NN to be a bayesian one, you do not need to make every single
layer probabilistic, having a fewer Bayesian layers is often better for stability
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VA
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VAE as variational inference

Inference Model
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VAE as variational inference

Generative Model
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VA

— as variational inference

Inference Model Generative Model
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pyro.ai

Guide Model
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Variational Autoencoder Loss

KLCN{p(X),2(X) HINCO, 1))

WS
X
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Conditional VAE

Guide Model
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Conditional VAE

1X(x,v) - x|?

X

KL|IN{u(X,Y),2(X,Y) YIINCO, I) |

X [y
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VAE results

VAE July 2020
(arxiv.org/abs/2007.03898):
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Literature
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