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›

Why study linear models?



Linear models in a nutshell

Andrey Ustyuzhanin

Outputs linear in 
inputs

Regression:

!𝑓 𝑥 = 𝜃!𝑥

Classification:

!𝑓 𝑥 = 𝕀 𝜃!𝑥 > 0

Targets ∈ ℝ (or even ℝ! in 
the multidimensional case) Targets ∈ some finite set



The hidden power
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▶ Linearly inseparable ⟶ separable by transforming the 
features
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Building block for deep models

Andrey Ustyuzhanin

Linear 
model

Ac
tiv

at
io

n 
fu

nc
tio

n
Linear 
model

Ac
tiv

at
io

n 
fu

nc
tio

n

Linear 
model

Ac
tiv

at
io

n 
fu

nc
tio

n

Linear 
model

Ac
tiv

at
io

n 
fu

nc
tio

n

Neural network
▶ Better intuition for deep neural networks training



›

Linear Regression



Linear Regression model
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!𝑓! 𝑥 = 𝜃"𝑥

𝜃 ∈ ℝ$
𝑥 ∈ 𝒳 ⊂ ℝ$

1
𝑁

(
#$%… '

𝑦# − !𝑓! 𝑥#
(

)
min

Mean Squared Error 
(MSE loss)

parameters vector

features vector

model prediction



Common loss functions

Andrey Ustyuzhanin
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Common loss functions
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▶ Different loss functions also are related to different 
assumptions about the data



Analytical solution
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▶ Recall the design matrix:

𝑋 =

𝑥## 𝑥#$ ⋯ 𝑥#%

𝑥$# 𝑥$$ ⋯ 𝑥$%
⋮ ⋮ ⋱ ⋮
𝑥&# 𝑥&$ ⋯ 𝑥&%

▶ We can use it to rewrite the MSE loss:
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$
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𝑦 = 𝑦#, 𝑦$, … , 𝑦& - – vector of targets

features

objects
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Analytical solution

Artem Maevskiy, NRU HSE

ℒ!"# ∼ 𝑦 − 𝑋𝜃 $ → min
%

𝜕
𝜕𝜃

ℒ'() = 0

𝜕$

𝜕𝜃𝜕𝜃-
ℒ'() > 0 pos. def.



Analytical solution
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𝜕
𝜕𝜃

ℒ'() ∼
𝜕
𝜕𝜃

𝑦 − 𝑋𝜃 - 𝑦 − 𝑋𝜃 = −2𝑋- 𝑦 − 𝑋𝜃 = 0

𝑋-𝑦 − 𝑋-𝑋𝜃 = 0

𝜃 = 𝑋-𝑋
.#
𝑋-𝑦

▶ Working on the 1st derivative*:

Note that this matrix 
needs to be invertible

▶ Solution:

*some useful info about matrix calculus: https://en.wikipedia.org/wiki/Matrix_calculus#Identities

https://en.wikipedia.org/wiki/Matrix_calculus


Analytical solution
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𝜕$

𝜕𝜃𝜕𝜃-
ℒ'() ∼ 2𝑋-𝑋

▶ 2nd derivative:

▶ This needs to be positive definite
▶ True when all the features (columns of the design matrix) are linearly 

independent
▶ This also makes 𝑋:𝑋 invertible

𝑣#𝑋#𝑋𝑣 = 𝑋𝑣 # 𝑋𝑣 = 𝑋𝑣 " ≥ 0
≠ 0

when columns of 𝑋 are 
linearly independent

For some non-zero vector 
𝑣:



Feature correlations matter!
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No correlation 50% correlation 100% correlation

𝜃#

𝜃$

𝜃#

𝜃$

𝜃#

𝜃$

MSE level maps



Bias term
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a.k.a. intercept term

!𝑓! 𝑥 = 𝜃"𝑥 + 𝜃*
𝜃 ∈ ℝ$
𝜃; ∈ ℝ

𝑥 ∈ 𝒳 ⊂ ℝ$

𝑋 =

𝑥'' 𝑥'+ ⋯ 𝑥'$

𝑥+' 𝑥++ ⋯ 𝑥+$
⋮ ⋮ ⋱ ⋮
𝑥)' 𝑥)+ ⋯ 𝑥)$

𝑋 =

1 𝑥'' 𝑥'+ ⋯ 𝑥'$

1 𝑥+' 𝑥++ ⋯ 𝑥+$
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥)' 𝑥)+ ⋯ 𝑥)$

▶ No need to redo the math – just add a 
constant feature to the design matrix:



›

Numerical & Stochasic 
Optimization



Gradient
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▶ Gradient: ∇<𝑓 𝑥 ≡ => <
=<'

, … , => <
=<(

▶ Points towards steepest function 
increase



Gradient Descent Optimization
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▶ Can optimize functions starting at some 
initial point 𝑥 ; and moving opposite 
to the gradient:

𝑥 ? ⟵ 𝑥 ?@' − 𝛼∇<𝑓 𝑥 ?@'

▶ For smooth convex functions with a 
single minimum 𝑥∗:

with 𝛼 ∈ ℝ, 𝛼 > 0 – learning rate.

𝑓 𝑥 ? − 𝑓 𝑥∗ = 𝒪
1
𝑘



Gradient descent for non-convex functions
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▶ May get to a minimum which is not 
global

▶ Result depends on the starting point



Stochastic Gradient Descent (SGD)
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▶ In machine learning we optimize loss functions which are typically averages over 
objects:

𝐿 =
1
𝑁 0
% & ' …)

ℒ 𝑦%, A𝑓* 𝑥%

▶ For large 𝑁, gradient descent is computationally inefficient and may be 
unfeasible in terms of memory consumption

▶ Aternative: 
– At each step 𝑘 pick 𝑙$ ∈ 1,… ,𝑁 at random

– Optimize: 𝜃 $ ⟵ 𝜃 $%! − 𝛼∇&ℒ 𝑦'! , B𝑓& 𝑥'! D
𝜃 = 𝜃($%!)
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Stochastic Gradient Descent (SGD)
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SGD convergence rate for 
smooth convex functions with 
a single minimum: 𝒪 $

)

Can be improved by batching 
and other tricks



›

Feature Expansion



Feature expansion
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𝑥+' 𝑥++ ⋯ 𝑥+$
⋮ ⋮ ⋱ ⋮
𝑥)' 𝑥)+ ⋯ 𝑥)$
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▶ One can perform feature transformations with any function Φ: ℝ$ → ℝ$)
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Feature expansion

Andrey Ustyuzhanin

𝑋 =

𝑥'' 𝑥'+ ⋯ 𝑥'$

𝑥+' 𝑥++ ⋯ 𝑥+$
⋮ ⋮ ⋱ ⋮
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▶ One can perform feature transformations with any function Φ: ℝ$ → ℝ$)

▶ Finding the best function Φ is called feature engineering
– It is an important part of machine learning and requires deep 

understanding of the underlying problem and the data



Example: polynomial features
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𝑥

𝑦

𝒚 = 𝒙 +
𝟏
𝟐
𝒙𝟐 ▶ Can’t be solved with the only 

linear feature (𝑥)



Example: polynomial features
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𝑥'
𝑥+

𝒙𝟐 =
𝒙𝟏𝟐

𝒚 = 𝒙𝟏+
𝟏
𝟐
𝒙𝟐 ▶ Introducing another feature does 

the job:

𝑥%, 𝑥( ≡ (𝑥, 𝑥( )

▶ Now our estimate is:
!𝑓 𝑥 = 𝜃%𝑥 + 𝜃(𝑥(

𝑦



Polynomial features of degree 𝑝 (general case)
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For the original features:
𝑥#%, 𝑥#(, … , 𝑥#+

introduce all unique multiplicative combinations of the form:

𝑥#
,! -! ⋅ 𝑥#

," -" ⋅ … ⋅ 𝑥#
,# -#

with 𝑝# + 𝑝$ + …+ 𝑝E ≤ 𝑝



Example: degree 3 polynomial features
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For the original features 𝑎, 𝑏, 𝑐 :

1, 𝑎, 𝑏, 𝑐, 𝑎!, 𝑎𝑏, 𝑎𝑐, 𝑏!, 𝑏𝑐, 𝑐!, 𝑎", 𝑎!𝑏, 𝑎!𝑐, 𝑎𝑏!, 𝑎𝑏𝑐, 𝑎𝑐!, 𝑏", 𝑏!𝑐, 𝑏𝑐!, 𝑐"



Summary
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▶ Understanding linear models gives useful insights into more complicated machine 
learning algorithms and optimization

▶ Linear Regression with MSE loss allows for analytical solution
▶ The stability of the solution depends on the feature correlations
▶ Linear models can be optimized with gradient descent and stochastic gradient 

descent
– In some cases this can regularize the solution

▶ Feature transformations allow for very powerful use of the linear models

▶ Food for thought: how does polynomial feature expansion 
affect the complexity of the model?



Quiz / Questions

A. four
B. five
C. six
D. seven
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How many features do we totally end up with after applying degree-2 polynomial 
expansion (including the bias term) to a pair of features?

Image by: pixabay.com/users/alexas_fotos-686414/

https://pixabay.com/users/alexas_fotos-686414/


Thank you!
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