Introduction to Supervised Learning

Problem setup, feature types, assumptions about data

MISiS Mega Science, Spring Semester

Artem Maevskiy¹, Ekaterina Trofimova¹, <u>Andrey Ustyuzhanin^{1,2}</u>,

¹National HSE University

²MISiS National University of Science and Technology

National University of Science and Technology

March 2021

Supervised Learning

Problem setup

A dataset:
$$D = \{(x_i, y_i) : i = 1, 2, ..., N\}$$

 $x_i \in \mathcal{X}, \quad y_i = f(x_i) \in \mathcal{Y}$

Goal: approximate *f* given *D* i.e. learn to recover targets from objects

Andrey Ustyuzhanin

Examples

Iris flower species classification

Objects

Individual flowers, described by the length and width of their sepals and petals

Targets

images source: wikipedia.org

Species to which this particular flower belongs

Mapping

Different shapes of sepals and petals correspond to different species

(non-deterministic)

Examples

Spam filtering

Objects

E-mails (sequences of characters)

Targets

"spam" / "not spam"

Mapping

Message content defines whether it's spam or not

(non-deterministic, varies from person to person)

Examples

CAPTCHA recognition

Objects

CAPTCHA images (vectors of pixel brightness levels)

Targets

Sequences of characters

Mapping

Inverse of CAPTCHA generating algorithm

(almost deterministic, depending on the level of distortion)

following finding

image source: wikipedia.org

Examples

Particle identification in a HEP experiment

Objects

Particles, described by the detector responses (e.g. track parameters, calorimeter energy deposit, etc.)

Targets

Types of the particles (e, μ, p , etc...)

Mapping

Inverse of physical processes generating the detector response

(non-deterministic)

Features

- Objects x_i are described by features x_i^j , i.e.:
 - $-x_i = (x_i^1, x_i^2, \dots, x_i^d)$
- many algorithms require that the dimensionality d of the data is same for all objects
 - In such case the objects may be organised in a design matrix:

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix} \quad \text{objects}$$

Example: Iris dataset

sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.2
6.7	3.0	5.2	2.3
6.3	2.5	5.0	1.9
6.5	3.0	5.2	2.0
6.2	3.4	5.4	2.3
5.9	3.0	5.1	1.8

In this example, all featuers are real numbers

Feature types

- Individual features x_i^j may be of various nature
- Common cases:
 - Numeric features, e.g.:
 - Sepal length
 - Height of a building
 - Particle transverse momentum
 - Number of hits on the particle track

Feature types

- Individual features x_i^j may be of various nature
- Common cases:
 - Categorical
 - **nominal** (no order implied), e.g.:
 - Color City of birth Particle type

ordinal (values can be compared, though pairwise differences are not defined), e.g.:

Level of education Particle passing loose, medium or tight selection criteria Age category (child, teen, adult, etc.)

Feature types

- Individual features x_i^j may be of various nature
- Common cases:
 - Binary, e.g.:
 - True / False
 - Can be treated as numeric (0/1 or -1/+1)

Learning Algorithms

Machine Learning Algorithm

Algorithm *A*:

given a dataset $D = \{(x_i, y_i) : i = 1, 2, ..., N\}$ $x_i \in \mathcal{X}, y_i = f(x_i) \in \mathcal{Y}$

returns an approximation $\hat{f} = \mathcal{A}(D)$ to the true dependence f.

Example: k nearest neighbors (kNN)

- Idea: close objects should have similar targets
- Why don't we look up k closest (by some metric of the feature space) objects in the dataset and average their targets:

$$\hat{f}(x) = \frac{1}{k} \sum_{i: x_i \in D_x^k} y_i$$

 D_x^k – set of k objects from D closest to x

Example: k nearest neighbors

training points: 50

Example: k nearest neighbors

training points: 250

More data = better approximation

Example: k nearest neighbors

Classification example

Loss function

- How does an algorithm find the approximation $\hat{f} = \mathcal{A}(D)$ to the true mapping function?
- Many algorithms work by solving an optimization task
- We can measure the quality of a prediction for a single object x_i with a loss function $\mathcal{L} = \mathcal{L}(y_i, \hat{f}(x_i))$

Then, learning can be formulated as a loss minimization problem:

$$\hat{f} = \operatorname{argmin}_{\tilde{f}} \mathop{\mathbb{E}}_{(x, y) \in D} \mathcal{L}\left(y, \tilde{f}(x)\right)$$

Example: linear regression

How to check whether a model is good?

Check the loss on the **test data** – i.e. data that the learning algorithm "hasn't seen"

The goal is to find the right level of limitations – not too strict, not too loose

Summary

- Supervised Machine Learning algorithms build approximations $\hat{f} = \mathcal{A}(D)$ to the true dependence f
- Features may be of various nature: real, categorical, binary
- Machine Learning algorithms can be defined as expected risk minimization tasks
- Choosing the right model = applying the right assumptions about the data
- Use test data to detect underfitting and overfitting

Food for thought: how can Linear Regression model be used to fit a n-th degree polynomial?

Quiz / Questions

Among the models below which one has the lowest complexity for a fixed training set size (i.e. restricts the solution space the most)?

- A. kNN (k = 1)
- B. kNN (k = 5)
- c. kNN (k = 20)
- D. All of these are of same complexity

Thank you!

Andrey Ustyuzhanin