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▶ Human-level playing in computer games (Go, StarCraft, Dota 2) and winning 
world's Go champion Lee Sedol by Google AlphaGo;

▶ Understanding and generation of human-readable and understandable texts;
▶ Recognition and generation of images indistinguishable from photos by the 

naked eye;
▶ Simulation of complicated physics processes;
▶ Controlling complicated real-time systems like quantum qubits;
▶ Controlling autonomous vehicles in populated regions;
▶ … and many others.

Remarkable examples of AI technologies
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City street view simulation
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https://arxiv.org/abs/1808.06601https://www.youtube.com/watch?v=ayPqjPekn7g

This time lap shows the original scene (left), segmentation
map (bottom right) and neural-network produced scene
(right) by NVIDIA.

https://arxiv.org/abs/1808.06601
https://www.youtube.com/watch?v=ayPqjPekn7g&feature=youtu.be


▶ The time lap shows properly simulated water volume evolution (left) and 
simulated evolution by the trained neural network (right) with "Graph 
Network-based Simulators» (Alvaro Sanchez-Gonzalez et al.)

Fluid dynamics computation
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https://sites.google.com/view/learning-to-simulate/home


Larry Tesler

│Tesler’s theorem: 
│“AI is whatever hasn’t 

been done yet”
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Interdisciplinary area that embraces ML and bridges the gap between ML 
and domain specifics by iterative procedure:
▶ Data collection from experiment or software simulation
▶ Prior choice and Hypothesis formulation
▶ Algorithm family selection from ML world (Decision Tree, Convolutional 

Neural Networks, Flows, etc.)
▶ Training of the algorithm using the data collected
▶ Validation of the trained algorithm
▶ Production deployment

Machine Intelligence (MI)



›

Abridged History of science
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Jim Gray vision, 2009
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link

https://www.microsoft.com/en-us/research/wp-content/uploads/2009/10/Fourth_Paradigm.pdf


Empirical Science Questions
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▶ What are the causes of solar eclipse?

▶ Can we estimate time of the next 
eclipse?

▶ How to describe motion of the moon 
and the planets?

▶ Is Earth flat?

▶ How can we navigate using 
stars?

▶ Does the sun rotate around 
the Earth or vice versa?

▶ Which body does fall faster?



▶ Developed by Newton, Leibniz
▶ At every moment of time t, we can express 

the dependency of angular acceleration ε

Theoretical branch: differential equations
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▶ Computes the evolution of 
mathematical models using machines;

▶ Especially useful when closed-form 
solution is not available
– weather forecasting, earth simulator, 

flight simulator, molecular protein folding, 
and so on.

▶ Requires special math methods;
▶ Blooms with computing power 

availability.

Computational branch: computer simulation



▶ Forward: from given initial system parameters, get the observable state
▶ Inverse: from the observable state, get hidden parameters

– No single solution

– No straightforward way to compute

– But if one can approximate evolution of a system by some differentiable surrogate, 
it might profit from methods of Machine Learning

– Systems for probabilistic programming: Stan, PyMC3, pyro, Tensorflow Probability 
(ex Edward) or pyprob. 

Forward and Inverse problems
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▶ Instead of accurately computing all 
the outcome probabilities, one can 
combine the randomness from 
different sources to replicate the 
overall system dynamics

▶ E.g. compute the area of a circle:

Monte Carlo Method
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https://en.pelican.study/static/bundles/demonstrations/pi/index.html


›

Data-driven science
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▶ Data deluge
– Experiments

– Industry

– Simulation

▶ Computational power
– Moore’s law

▶ Sophisticated (meta—level) algorithms

Main boosting factors
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▶ Data sample
– Features

– Labels

▶ Features
– Type: float, integer, …

– Distributions

▶ Labels, given from outside
– Boolean, integers, real vectors, … 

A Dataset for particle classification
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Two types of particles: muons and electrons

Andrey Ustyuzhanin 17



▶ K-nearest neighbors (or k−NN for short) is a classification algorithm 
that decides by 
– For every given feature vector F representing unknown particle 

– k−NN looks at the K nearest neighbors from the training sample and 

– counts the fraction of electrons and muons among the neighbors. 

K-Nearest neighbors
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▶ By the information needed to make decision:
– Supervised - uses labelled sample for training;
– Unsupervised - exploits distance between different objects and doesn't need labels;
– Reinforced learning - the ground truth becomes available to the algorithm during interaction with 

environment. Examples include playing computer games, controlling robots or more complicated 
mechanisms.

▶ By the type of decision:
– Classification - attributing an object to one of given classes;
– Regression - estimation of real number (or vector) from given features;
– Policy search - building a control policy, e.g. strategy of moves for a game or actuator control;
– Segmentation - selection of a region belonging to specific class object inside input data;
– Generative - learn how to generate objects of certain kind, e.g. images of human faces or cars or 

even painting style.

Taxonomies of machine learning algorithms
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By the type of input objects (features) an algorithm can deal with:
▶ tabular representation;
▶ 2D or 3D image;
▶ text;
▶ time series;
▶ graphical data.
For example, Naive Bayes algorithm is supervised classification algorithm that 
easily deals with tabular data. Interestingly to note that the algorithm builds a 
generative model P(F∣C) behind the scenes for estimation of likelihood for 
different classes. 

Taxonomies of machine learning algorithms (2)
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Deep Learning
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LinkInceptionNet, 5 million parameters

https://arxiv.org/abs/1409.4842
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Deep Learning Applications
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Particle production probabilities

Particles of interest are produced rarely. 

∼1 second in a human lifetime

That is why we need to:

look through as many collisions as possible

̼ to maximise the probability of having 
interesting event

Do not store uninteresting events

̼ Decision time ∼10-7 seconds

 X

noise: 
40 000 000 Hz

signal:
1..10/hour



Important ML application areas in HEP
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http://bit.ly/2FHWTZ4

http://bit.ly/2FHWTZ4


Example: Fast Calorimetry Simulation

▶ LHCb-like calorimeter 30x30
▶ 5 conditional parameters per 

particle (3D momentum, 2D 
coordinate)

▶ Electrons from particle gun 
shot at 1x1 cm square at the 
center of the calorimeter face

▶ Approach: use GANs
▶ 105 x speed-up!
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https://doi.org/10.1051/epjconf/201921402034


▶ Apply computer vision and natural language processing techniques to 
Physics-motivated data structures, like jets, flows, showers, fields;

▶ Can MI help with our most computationally costly problems, like 
simulation or the combinatorial challenge?

▶ Can fast O(ns-µs) MI inference be done with FPGAs to put MI early in 
the trigger / data acquisition process?

▶ Can we make MI models robust to data change?
▶ Can we encode physics-motivated reasoning into MI computations?
▶ How can we make the best use of simulation engine for inference (of 

latent variables) given that observation likelihood is intractable?

Modern MI Challenges in Physics
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https://nature.com/articles/s41586-018-0361-2 https://doi.org/10.1073/pnas.1912789117

https://nature.com/articles/s41586-018-0361-2
https://doi.org/10.1073/pnas.1912789117


▶ Relies on the developed background,
▶ Works best in cooperation with domain science expertise,
▶ Meta-reasoning,
▶ Embeds learning patterns into a trainable algorithm

– Convolutional neural network
– Langevin Gradient Descent
– Generative Adversarial Network
– Neural [Ordinary] Differential Equations
– Monte Carlo Tree Search
– …and many others

Mache Learning research
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Wholistic picture
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Link 

https://scholar.google.com/scholar?hl=ru&as_sdt=0%2C5&q=G.+Bell%2C+T.+Hey%2C+and+A.+Szalay%2C+%E2%80%9CBeyond+the+Data+Deluge%2C%E2%80%9D+Science%2C+vol.+323%2C+no.+5919%2C+pp.+1297%E2%80%931298%2C+2009%2C+doi%3A+10.1126%2Fscience.1170411&btnG=


▶ Introduction into Machine Learning
▶ Introduction into Deep Learning
▶ Generative models
▶ Optimization methods
▶ Advanced topics

MISiS Spring semester course
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▶ “AI” is for PR/politics, “ML” - for theory, “MI” - for practice
▶ MI is deeply grounded in all known scientific paradigms

– Empirical, theoretical, probabilistic and computational
▶ MI transforms ways of reasoning into usable tools 

– Logic, common sense
– Statistical inference
– Rational reasoning and awareness of thinking patterns
– Computational reasoning

▶ Biggest challenges for MI: 
– Improve our understanding why and how Deep Learning works
– Close the loop: Experiment -> hypothesis -> theory -> experiment

▶ Welcome to the spring semester course!

Conclusion
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Thank you!

anaderiRu
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