Machine Intelligence

inter-disciplinary perspective

Andrey Ustyuzhanin ^{1,2}

¹ NRU HSE ² NUST MISIS

May 19, 2020

Remarkable examples of AI technologies

- Human-level playing in computer games (Go, StarCraft, Dota 2) and winning world's Go champion Lee Sedol by Google AlphaGo;
- Understanding and generation of human-readable and understandable texts;
- Recognition and generation of images indistinguishable from photos by the naked eye;
- Simulation of complicated physics processes;
- Controlling complicated real-time systems like quantum qubits;
- Controlling autonomous vehicles in populated regions;
- ... and many others.

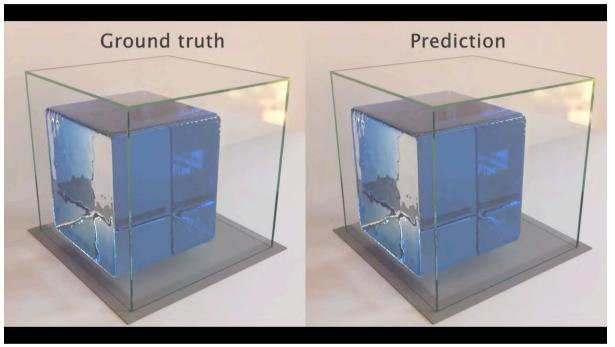
City street view simulation

This time lap shows the original scene (left), segmentation map (bottom right) and neural-network produced scene (right) by NVIDIA.

https://www.youtube.com/watch?v=ayPqjPekn7g

https://arxiv.org/abs/1808.06601

Fluid dynamics computation



The time lap shows properly simulated water volume evolution (left) and simulated evolution by the trained neural network (right) with "Graph Network-based Simulators» (Alvaro Sanchez-Gonzalez et al.)

Tesler's theorem: "Al is whatever hasn't been done yet"

Larry Tesler

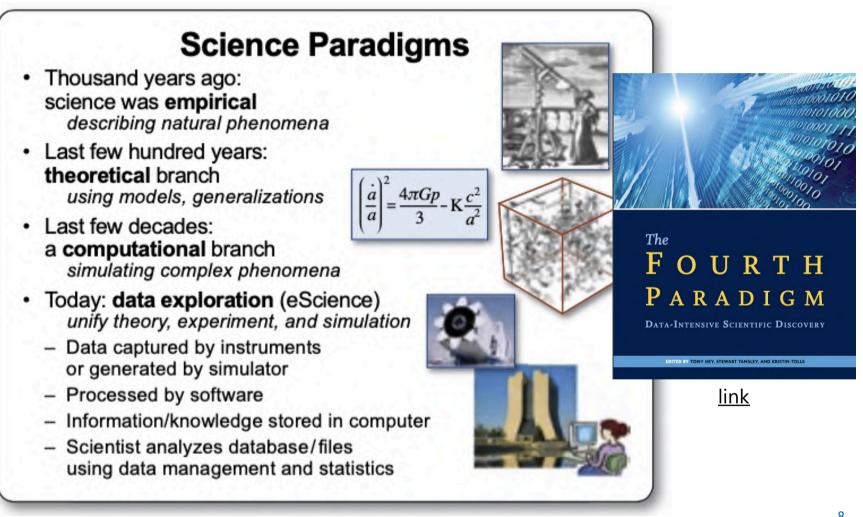
Machine Intelligence (MI)

Interdisciplinary area that embraces ML and bridges the gap between ML and domain specifics by iterative procedure:

- Data collection from experiment or software simulation
- Prior choice and Hypothesis formulation
- Algorithm family selection from ML world (Decision Tree, Convolutional Neural Networks, Flows, etc.)
- Training of the algorithm using the data collected
- Validation of the trained algorithm
- Production deployment

Abridged History of science

Jim Gray vision, 2009



Empirical Science Questions

- How can we navigate using stars?
- Does the sun rotate around the Earth or vice versa?
- Which body does fall faster?

- What are the causes of solar eclipse?
- Can we estimate time of the next eclipse?
- How to describe motion of the moon and the planets?
- Is Earth flat?

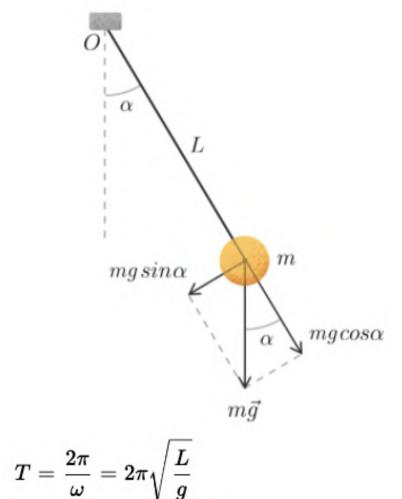
Theoretical branch: differential equations

- Developed by Newton, Leibniz
- At every moment of time t, we can express the dependency of angular acceleration ε

$$arepsilon=rac{d^2lpha}{dt^2}=rac{M}{I}$$

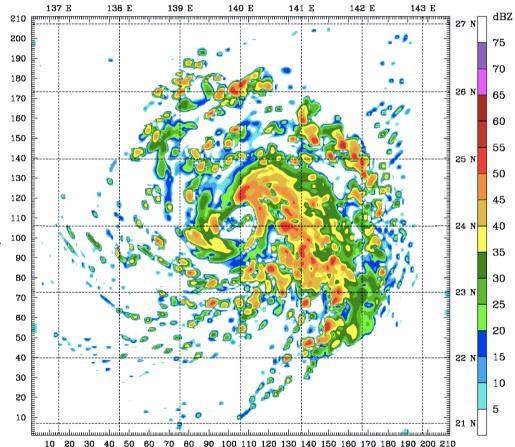
$$rac{d^2lpha}{dt^2} = rac{mgL\sinlpha}{mL^2} = -rac{g\sinlpha}{L}, \Rightarrow rac{d^2lpha}{dt^2} + rac{g}{L}\sinlpha = 0$$

$$rac{d^2lpha}{dt^2}+rac{g}{L}lpha=0 ext{ or } rac{d^2lpha}{dt^2}+\omega^2lpha=0, ext{where} \quad \omega=\sqrt{rac{g}{L}}$$



Computational branch: computer simulation

- Computes the evolution of mathematical models using machines;
- Especially useful when closed-form solution is not available
 - weather forecasting, earth simulator,
 flight simulator, molecular protein folding,
 and so on.
- Requires special math methods;
- Blooms with computing power availability.



Forward and Inverse problems

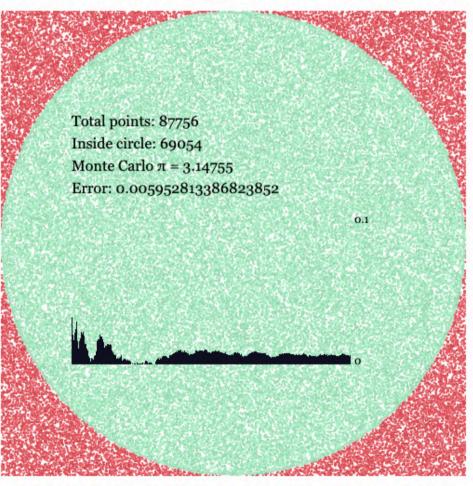
- Forward: from given initial system parameters, get the observable state
- Inverse: from the observable state, get hidden parameters
 - No single solution
 - No straightforward way to compute
 - But if one can approximate evolution of a system by some differentiable surrogate, it might profit from methods of Machine Learning
 - Systems for probabilistic programming: Stan, PyMC3, pyro, Tensorflow Probability (ex Edward) or pyprob.

Monte Carlo Method

- Instead of accurately computing all the outcome probabilities, one can combine the randomness from different sources to replicate the overall system dynamics
- E.g. compute the area of a circle:

```
import numpy as np

def pi_MC(n):
    assert n > 0, "argument should be positive"
    x = np.random.rand(n)
    y = np.random.rand(n)
    n_c = np.count_nonzero(x**2 + y**2 <= 1)
    return 4 * n_c / n</pre>
```



print pi_MC(1000)

Andrey Ustyuzhanin https://en.pelican.study/static/bundles/demonstrations/pi/index.html

Data-driven science

Main boosting factors

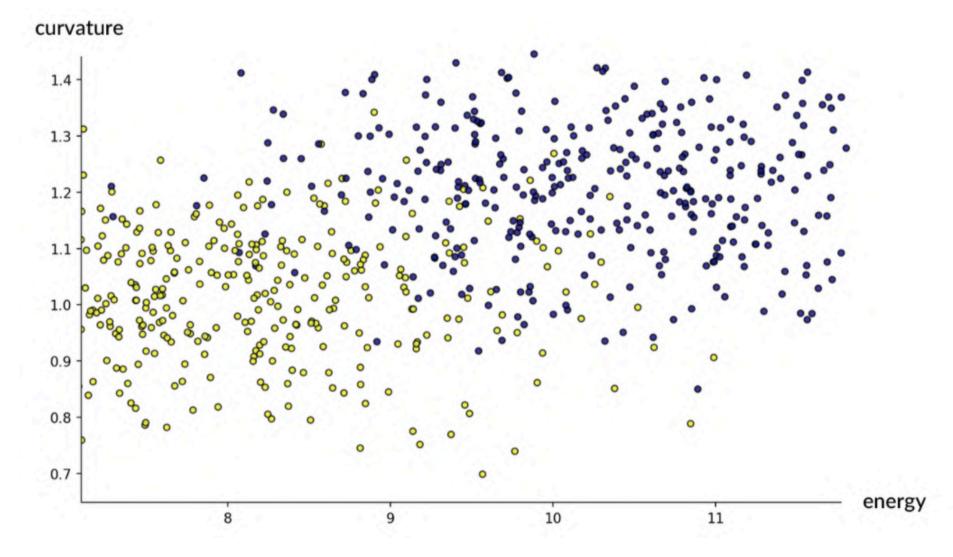
- Data deluge
 - Experiments
 - Industry
 - Simulation
- Computational power
 - Moore's law
- Sophisticated (meta—level) algorithms

A Dataset for particle classification

	Energy	Curvature	Class label	
0	10.122077	1.226283	0.0	
1	7.760199	1.062012	1.0	
2	10.989290	0.906222	1.0	
3	8.759292	1.096391	1.0	
4	10.778759	1.182548	0.0	
		0 10.122077 1 7.760199 2 10.989290 3 8.759292	0 10.122077 1.226283 1 7.760199 1.062012 2 10.989290 0.906222 3 8.759292 1.096391	0 10.122077 1.226283 0.0 1 7.760199 1.062012 1.0 2 10.989290 0.906222 1.0 3 8.759292 1.096391 1.0

- Type: **float**, integer, ...
- Distributions
- Labels, given from outside
 - Boolean, integers, real vectors, ...

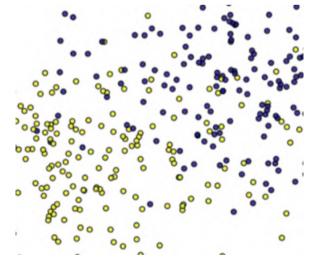
Two types of particles: muons and electrons

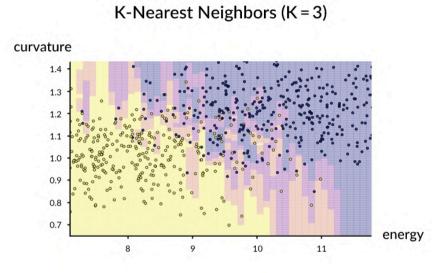


17

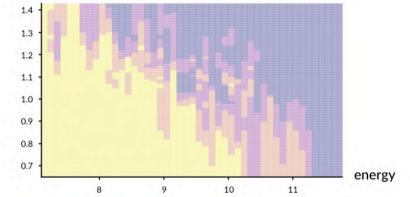
K-Nearest neighbors

- K-nearest neighbors (or k–NN for short) is a classification algorithm that decides by
 - For every given feature vector F representing unknown particle
 - k-NN looks at the K nearest neighbors from the training sample and
 - counts the fraction of electrons and muons among the neighbors.

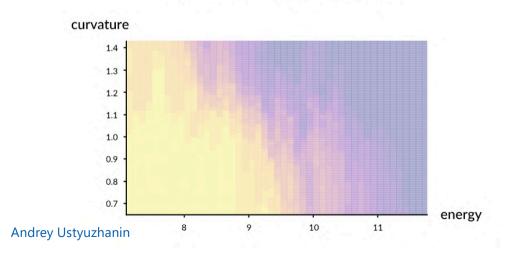




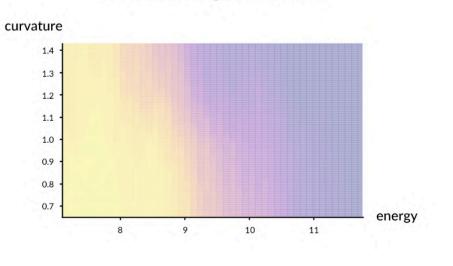
K-Nearest Neighbors (K = 3) curvature



K-Nearest Neighbors (K = 15)



K-Nearest Neighbors (K = 50)



Taxonomies of machine learning algorithms

- By the information needed to make decision:
 - Supervised uses labelled sample for training;
 - Unsupervised exploits distance between different objects and doesn't need labels;
 - Reinforced learning the ground truth becomes available to the algorithm during interaction with environment. Examples include playing computer games, controlling robots or more complicated mechanisms.
- By the type of decision:
 - Classification attributing an object to one of given classes;
 - Regression estimation of real number (or vector) from given features;
 - Policy search building a control policy, e.g. strategy of moves for a game or actuator control;
 - Segmentation selection of a region belonging to specific class object inside input data;
 - Generative learn how to generate objects of certain kind, e.g. images of human faces or cars or even painting style.

Taxonomies of machine learning algorithms (2)

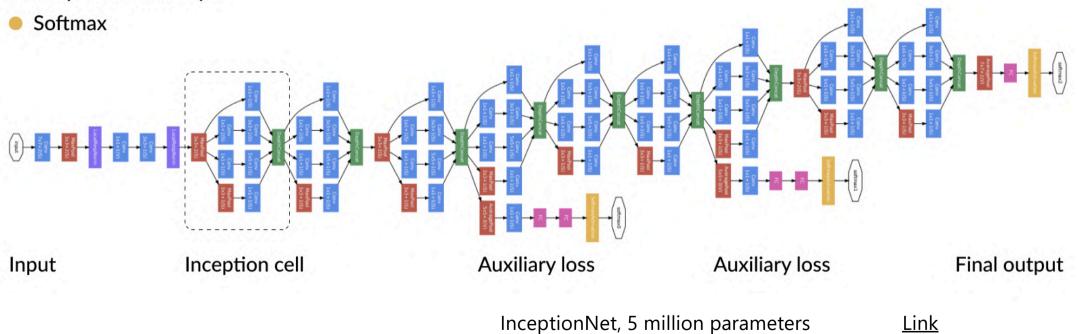
By the type of input objects (features) an algorithm can deal with:

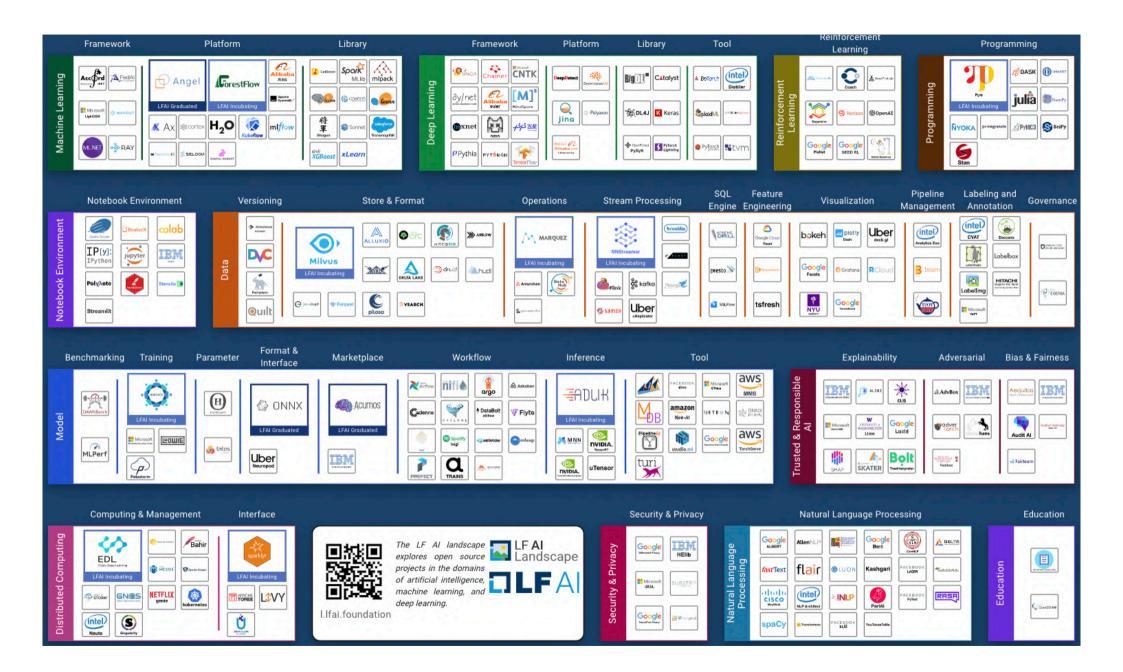
- tabular representation;
- 2D or 3D image;
- text;
- time series;
- graphical data.

For example, Naive Bayes algorithm is supervised classification algorithm that easily deals with tabular data. Interestingly to note that the algorithm builds a generative model P(F^IC) behind the scenes for estimation of likelihood for different classes.

Deep Learning

- Convolution
- Max pooling
- Channel concatenation
- Channel-wise normalization
- Fully-connected layer





Deep Learning Applications

Shifting Ground: AI Analyzes Volcanoes for Signs of Eruption

March 5, 2019 by ISHA SALIAN



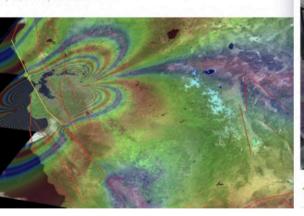
Seattle, Naples and Tokyo are separated common neighbor: potentially devastatin

Around the world, about 800 million peop

Deep Learning Shakes Up Seismology with Quake Early Warning System

When these scientists say "earth-shaking deep learning innovation mean it.

ebruary 28, 2019 by ISHA SALIAN



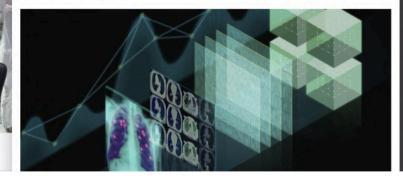
Cell by Cell: Deep Learning Powers Drug Discovery Effort for Hundreds of Rare Diseases

anuary 14, 2019 by ISHA SALIAN

150 < Shares

How AI Is Changing Medical Imaging

Neural networks are analyzing medical imaging data, transforming the field of radiology. March 4, 2019 by ISHA SALIAN



Particle production probabilities

Particles of interest are produced rarely.

~1 second in a human lifetime

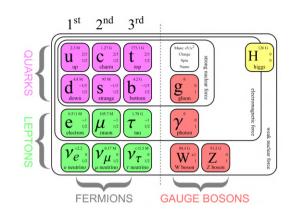
That is why we need to:

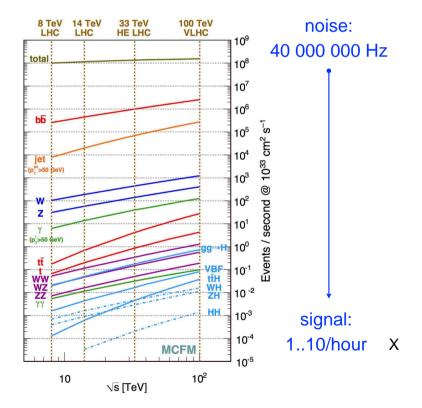
look through as many collisions as possible

> to maximise the probability of having interesting event

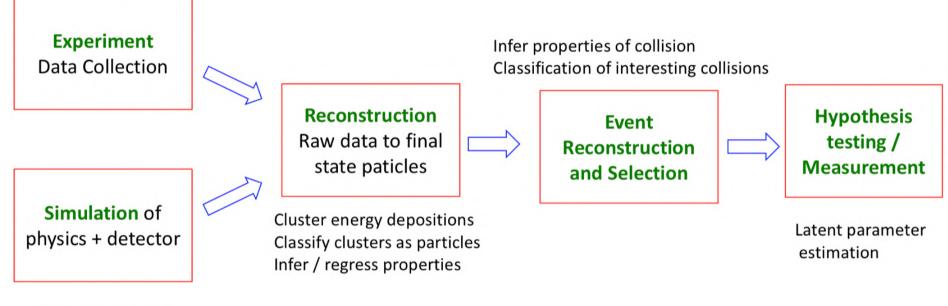
Do not store uninteresting events

 \rangle Decision time ~10⁻⁷ seconds





Important ML application areas in HEP

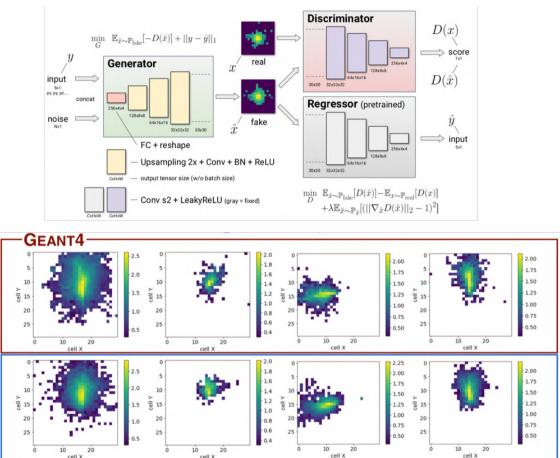


Generative Model

http://bit.ly/2FHWTZ4

Example: Fast Calorimetry Simulation

- LHCb-like calorimeter 30x30
- 5 conditional parameters per particle (3D momentum, 2D coordinate)
- Electrons from particle gun shot at 1x1 cm square at the center of the calorimeter face
- Approach: use GANs
- 10^5 x speed-up!



(b)

 $E_0 = 6.5 \, \text{GeV}$

cell X

(c)

 $E_0 = 15.6 \, \text{GeV}$

Andrey Ustyuzhanin

https://doi.org/10.1051/epjconf/201921402034

GAN

(a)

 $E_0 = 63.7 \, \text{GeV}$

(d)

 $E_0 = 15.9 \, \text{GeV}$

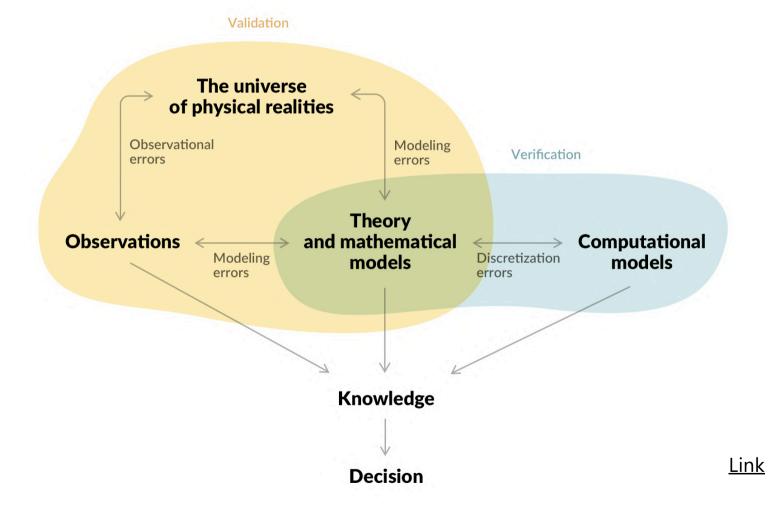
Modern MI Challenges in Physics

- Apply computer vision and natural language processing techniques to Physics-motivated data structures, like jets, flows, showers, fields;
- Can MI help with our most computationally costly problems, like simulation or the combinatorial challenge?
- Can fast O(ns-µs) MI inference be done with FPGAs to put MI early in the trigger / data acquisition process?
- Can we make MI models robust to data change?
- Can we encode physics-motivated reasoning into MI computations?
- How can we make the best use of simulation engine for inference (of latent variables) given that observation likelihood is intractable? <u>https://nature.com/articles/s41586-018-0361-2</u> <u>https://doi.org/10.1073/pnas.1912789117</u>

Mache Learning research

- Relies on the developed background,
- Works best in cooperation with domain science expertise,
- Meta-reasoning,
- Embeds learning patterns into a trainable algorithm
 - Convolutional neural network
 - Langevin Gradient Descent
 - Generative Adversarial Network
 - Neural [Ordinary] Differential Equations
 - Monte Carlo Tree Search
 - ...and many others

Wholistic picture



MISiS Spring semester course

- Introduction into Machine Learning
- Introduction into Deep Learning
- Generative models
- Optimization methods
- Advanced topics

Conclusion

- "Al" is for PR/politics, "ML" for theory, "MI" for practice
- MI is deeply grounded in all known scientific paradigms
 - Empirical, theoretical, probabilistic and computational
- MI transforms ways of reasoning into usable tools
 - Logic, common sense
 - Statistical inference
 - Rational reasoning and awareness of thinking patterns
 - Computational reasoning
- Biggest challenges for MI:
 - Improve our understanding why and how Deep Learning works
 - Close the loop: Experiment -> hypothesis -> theory -> experiment
- Welcome to the spring semester course!

Thank you!

Andrey Ustyuzhanin

Andrey Ustyuzhanin, NRU HSE