
Introduction to
PyTorch

Deep Learning Framework

Andrey Ustyuzhanin

National Research University Higher School of Economics
MISiS National University of Science and Technology

March, 2021

MISiS Mega Science, Spring Semester

DL frameworks in various abstraction levels
PyTorch
Lightning

source
Comparison, moar comparison

2Andrey Ustyuzhanin, NRU HSE

https://link.springer.com/article/10.1007/s10462-018-09679-z/figures/3
https://link.springer.com/article/10.1007/s10462-018-09679-z
https://www.netguru.com/blog/deep-learning-frameworks-comparison

3Andrey Ustyuzhanin, NRU HSE

▶ Automatic differentiation engine (autograd)
▶ Simple, transparent development/ debugging
▶ Rich Ecosystem:

– Plenty of pretrained models
– NLP, Vision, …
– Interpretation
– Hyper-optimization

▶ Production Ready (C++, ONNX, Services)
▶ Distributed Training, declarative data parallelism
▶ Cloud Deployment support
▶ Choice of many industry leaders and researchers

PyTorch highlights

4Andrey Ustyuzhanin, NRU HSE

Neural network representation

TensorsFunctions

X Y
relureluY

b2

W2 W1

b1

X

5Andrey Ustyuzhanin, NRU HSE

Building blocks, tensors

Andrey Ustyuzhanin, NRU HSE 6

Building blocks, graph

source

Toy example:

7Andrey Ustyuzhanin, NRU HSE

https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/

▶ https://pytorch.org/docs/stable/torch.html?highlight=mm#math-
operations

Math operations

8Andrey Ustyuzhanin, NRU HSE

https://pytorch.org/docs/stable/torch.html?highlight=mm

Building blocks, computational graph

9Andrey Ustyuzhanin, NRU HSE

Building blocks, computational graph

10Andrey Ustyuzhanin, NRU HSE

Gradient and tensors

Each Tensor has
- an attribute grad_fn, which refers to

the mathematical operator that create
the variable;

- an attribute grad, which contains
gradient value per tensor element

If Tensor is a leaf node (initialised by the
user), then the grad_fn is also None.

11Andrey Ustyuzhanin, NRU HSE

▶ All math operations performed by torch.autograd.Function children

– forward, computes node output and buffers it

– Backward, stores incoming gradient and passes further up

Functions

12Andrey Ustyuzhanin, NRU HSE

From backward() to gradient descent

13Andrey Ustyuzhanin, NRU HSE

▶ After calling forward the intermediate node variables are created;
▶ Then, the buffers for the non-leaf nodes allocated for the graph and

intermediate values used for computing gradients later. When you call
backward, as the gradients are computed, these buffers are essentially freed,
and the graph is destroyed;

▶ Next time, you call forward on the same set of tensors, the leaf node buffers
from the previous run will be shared, while the non-leaf nodes buffers
will be created again.

▶ If retain_graph = True passed to the backward function, the graph is not
recreated, and the computed gradients will be added to the previous iteration
values.

Dynamic graph

14Andrey Ustyuzhanin, NRU HSE

▶ Due to the flexibility of the network architecture, it is not obvious when
does iteration of a gradient descent stops, so backward’s gradients are
accumulated each time a variable (Tensor) occurs in the graph;

▶ It is usually desired for RNN cases;
▶ If you do not need to accumulate those, you must clean previous

gradient values at the end of each iteration:
– Either by x.data.zero_() for every model tensor x;

– Or by optimizers’s zero_grad() method (preferred).

Gradient cleaning

15Andrey Ustyuzhanin, NRU HSE

▶ Requires_grad attribute of the Tensor class.
By default, it’s False. It comes handy when
you must freeze some layers and stop them
from updating parameters while training.

▶ Thus, no gradient would be propagated to
them, or to those layers which depend
upon these layers for gradient flow
requires_grad.

▶ When set to True, requires_grad is
contagious: even if one operand of an
operation has requires_grad set to True,
so will the result.

Freezing weights

16Andrey Ustyuzhanin, NRU HSE

Pre-trained models enhancement

17Andrey Ustyuzhanin, NRU HSE

▶ When we are computing gradients, we need to cache input values, and intermediate features
as they maybe required to compute the gradient later.The gradient of b=w1∗aw.r.t it's inputs
w1 and a is a and w1 respectively. We need to store these values for gradient computation
during the backward pass. This affects the memory footprint of the network.

▶ While, we are performing inference, we don't compute gradients, and thus, don't need to store
these values. Infact, no graph needs to be create during inference as it will lead to useless
consumption of memory.

Inference

18Andrey Ustyuzhanin, NRU HSE

GPU, TPU support

▶ https://pytorch.org/docs/stable/cuda.html
▶ http://pytorch.org/xla/release/1.5/index.html

19Andrey Ustyuzhanin, NRU HSE

https://pytorch.org/docs/stable/cuda.html
http://pytorch.org/xla/release/1.5/index.html

torch.nn.Module

20Andrey Ustyuzhanin, NRU HSE

▶ https://pytorch.org/docs/stable/nn.html#loss-functions

Loss functions

21Andrey Ustyuzhanin, NRU HSE

https://pytorch.org/docs/stable/nn.html

▶ https://pytorch.org/docs/stable/nn.html#non-linear-activations-
weighted-sum-nonlinearity

Activation functions

22Andrey Ustyuzhanin, NRU HSE

https://pytorch.org/docs/stable/nn.html

▶ https://pytorch.org/docs/stable/optim.html

Optimizers

23Andrey Ustyuzhanin, NRU HSE

https://pytorch.org/docs/stable/optim.html

▶ https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader

Data Utils

▶ https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.Dataset

24Andrey Ustyuzhanin, NRU HSE

https://pytorch.org/docs/stable/data.html?highlight=dataloader
https://pytorch.org/docs/stable/data.html?highlight=dataset

▶ PyTorch lightning
▶ PyTorch geometric
▶ Hydra
▶ Horovod
▶ Skorch
▶ Captum
▶ And many others, see https://pytorch.org/ecosystem/

Ecosystem

25Andrey Ustyuzhanin, NRU HSE

https://pytorch.org/ecosystem/

▶ https://pytorch.org/docs/stable/index.html
▶ https://pytorch.org/tutorials/beginner/ptcheat.html
▶ http://neuralnetworksanddeeplearning.com/chap2.html
▶ https://www.khanacademy.org/math/differential-calculus/dc-chain
▶ https://blog.paperspace.com/pytorch-101-understanding-graphs-and-

automatic-differentiation/
▶ https://github.com/yandexdataschool/mlhep2019/blob/master/notebo

oks/day-3/seminar_pytorch.ipynb

Moar stuff

26Andrey Ustyuzhanin, NRU HSE

https://pytorch.org/docs/stable/index.html
https://pytorch.org/tutorials/beginner/ptcheat.html
http://neuralnetworksanddeeplearning.com/chap2.html
https://www.khanacademy.org/math/differential-calculus/dc-chain
https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/
https://github.com/yandexdataschool/mlhep2019/blob/master/notebooks/day-3/seminar_pytorch.ipynb

Conclusion

▶ PyTorch is a solid, flexible, production-ready
foundation for real-life deep-learning applications

▶ Building blocks:
– Tensors
– Functions

▶ Dynamic graph automatic differentiation
– CPU, GPU, TPU

▶ Rich ecosystem

27Andrey Ustyuzhanin, NRU HSE

Thank you!

austyuzhanin@hse.ru
anaderiRu
hse_lambda

Andrey Ustyuzhanin

28Andrey Ustyuzhanin, NRU HSE

mailto:austyuzhanin@hse.ru

