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DL frameworks in various abstraction levels
PyTorch
Lightning

source
Comparison, moar comparison
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https://link.springer.com/article/10.1007/s10462-018-09679-z/figures/3
https://link.springer.com/article/10.1007/s10462-018-09679-z
https://www.netguru.com/blog/deep-learning-frameworks-comparison
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▶ Automatic differentiation engine (autograd)
▶ Simple, transparent development/ debugging
▶ Rich Ecosystem:

– Plenty of pretrained models
– NLP, Vision, …
– Interpretation
– Hyper-optimization

▶ Production Ready (C++, ONNX, Services)
▶ Distributed Training, declarative data parallelism
▶ Cloud Deployment support
▶ Choice of many industry leaders and researchers 

PyTorch highlights
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Neural network representation
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Building blocks, tensors
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Building blocks, graph

source

Toy example:
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https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/


▶ https://pytorch.org/docs/stable/torch.html?highlight=mm#math-
operations

Math operations

8Andrey Ustyuzhanin, NRU HSE

https://pytorch.org/docs/stable/torch.html?highlight=mm


Building blocks, computational graph
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Building blocks, computational graph
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Gradient and tensors

Each Tensor has 
- an attribute grad_fn, which refers to 

the mathematical operator that create 
the variable;

- an attribute grad, which contains 
gradient value per tensor element

If Tensor is a leaf node (initialised by the 
user), then the grad_fn is also None.
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▶ All math operations performed by torch.autograd.Function children

– forward, computes node output and buffers it

– Backward, stores incoming gradient and passes further up

Functions
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From backward() to gradient descent
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▶ After calling forward the intermediate node variables are created;
▶ Then, the buffers for the non-leaf nodes allocated for the graph and 

intermediate values used for computing gradients later. When you call 
backward, as the gradients are computed, these buffers  are essentially freed, 
and the graph is destroyed;

▶ Next time, you call forward on the same set of tensors, the leaf node buffers 
from the previous run will be shared, while the non-leaf nodes buffers 
will be created again.

▶ If retain_graph = True passed to the backward function, the graph is not 
recreated, and the computed gradients will be added to the previous iteration 
values.

Dynamic graph
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▶ Due to the flexibility of the network architecture, it is not obvious when 
does iteration of a gradient descent stops, so backward’s gradients are 
accumulated each time a variable (Tensor) occurs in the graph;

▶ It is usually desired for RNN cases;
▶ If you do not need to accumulate those, you must clean previous 

gradient values at the end of each iteration:
– Either by x.data.zero_() for every model tensor x;

– Or by optimizers’s zero_grad() method (preferred).

Gradient cleaning
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▶ Requires_grad attribute of the Tensor class. 
By default, it’s False. It comes handy when 
you must freeze some layers and stop them 
from updating parameters while training. 

▶ Thus, no gradient would be propagated to 
them, or to those layers which depend 
upon these layers for gradient flow 
requires_grad. 

▶ When set to True, requires_grad is 
contagious: even if one operand of an 
operation has requires_grad set to True, 
so will the result.

Freezing weights
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Pre-trained models enhancement

17Andrey Ustyuzhanin, NRU HSE



▶ When we are computing gradients, we need to cache input values, and intermediate features 
as they maybe required to compute the gradient later.The gradient of b=w1∗aw.r.t it's inputs 
w1 and a is a and w1 respectively. We need to store these values for gradient computation 
during the backward pass. This affects the memory footprint of the network.

▶ While, we are performing inference, we don't compute gradients, and thus, don't need to store 
these values. Infact, no graph needs to be create during inference as it will lead to useless 
consumption of memory.

Inference
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GPU, TPU support

▶ https://pytorch.org/docs/stable/cuda.html
▶ http://pytorch.org/xla/release/1.5/index.html

19Andrey Ustyuzhanin, NRU HSE

https://pytorch.org/docs/stable/cuda.html
http://pytorch.org/xla/release/1.5/index.html


torch.nn.Module
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▶ https://pytorch.org/docs/stable/nn.html#loss-functions

Loss functions
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https://pytorch.org/docs/stable/nn.html


▶ https://pytorch.org/docs/stable/nn.html#non-linear-activations-
weighted-sum-nonlinearity

Activation functions
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https://pytorch.org/docs/stable/nn.html


▶ https://pytorch.org/docs/stable/optim.html

Optimizers
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https://pytorch.org/docs/stable/optim.html


▶ https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader

Data Utils

▶ https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.Dataset
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https://pytorch.org/docs/stable/data.html?highlight=dataloader
https://pytorch.org/docs/stable/data.html?highlight=dataset


▶ PyTorch lightning
▶ PyTorch geometric
▶ Hydra
▶ Horovod
▶ Skorch
▶ Captum
▶ And many others, see https://pytorch.org/ecosystem/

Ecosystem
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https://pytorch.org/ecosystem/


▶ https://pytorch.org/docs/stable/index.html
▶ https://pytorch.org/tutorials/beginner/ptcheat.html
▶ http://neuralnetworksanddeeplearning.com/chap2.html
▶ https://www.khanacademy.org/math/differential-calculus/dc-chain
▶ https://blog.paperspace.com/pytorch-101-understanding-graphs-and-

automatic-differentiation/
▶ https://github.com/yandexdataschool/mlhep2019/blob/master/notebo

oks/day-3/seminar_pytorch.ipynb

Moar stuff
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https://pytorch.org/docs/stable/index.html
https://pytorch.org/tutorials/beginner/ptcheat.html
http://neuralnetworksanddeeplearning.com/chap2.html
https://www.khanacademy.org/math/differential-calculus/dc-chain
https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/
https://github.com/yandexdataschool/mlhep2019/blob/master/notebooks/day-3/seminar_pytorch.ipynb


Conclusion

▶ PyTorch is a solid, flexible, production-ready 
foundation for real-life deep-learning applications

▶ Building blocks:
– Tensors
– Functions

▶ Dynamic graph automatic differentiation
– CPU, GPU, TPU

▶ Rich ecosystem
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Thank you!

austyuzhanin@hse.ru
anaderiRu
hse_lambda

Andrey Ustyuzhanin
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