Introduction to OPyTorch Deep Learning Framework

MISiS Mega Science, Spring Semester

Andrey Ustyuzhanin

National Research University Higher School of Economics MISiS National University of Science and Technology

March, 2021

DL frameworks in various abstraction levels

Comparison, moar comparison

OPINIONS DIFFER AMONG THE SAINTS...

AS WELL AS AMONG THE SINNERS.

-ABRAHAM Lincoln

PyTorch highlights

- Automatic differentiation engine (autograd)
- Simple, transparent development/ debugging
- Rich Ecosystem:
 - Plenty of pretrained models
 - NLP, Vision, ...
 - Interpretation
 - Hyper-optimization
- Production Ready (C++, ONNX, Services)
- Distributed Training, declarative data parallelism
- Cloud Deployment support
- Choice of many industry leaders and researchers

Neural network representation

Building blocks, tensors

torch.randn(*size)
torch.[ones|zeros](*size)
torch.Tensor(L)
x.clone()
with torch.no_grad():
requires_grad=True

x.size()
torch.cat(tensor_seq, dim=0)
x.view(a,b,...)
x.view(-1,a)
x.transpose(a,b)
x.permute(*dims)
x.unsqueeze(dim)
x.unsqueeze(dim=2)

tensor with independent N(0,1) entries # tensor with all 1's [or 0's] # create tensor from [nested] list or ndarray L # clone of x # code wrap that stops autograd from tracking tensor history # arg, when set to True, tracks computation # history for future derivative calculations

return tuple-like object of dimensions
concatenates tensors along dim
reshapes x into size (a,b,...)
reshapes x into size (b,a) for some b
swaps dimensions a and b
permutes dimensions
tensor with added axis
(a,b,c) tensor -> (a,b,1,c) tensor

Building blocks, graph

Math operations

- A.mm(B) # matrix multiplication
- A.mv(x) # matrix-vector multiplication
- x.t() # matrix transpose

https://pytorch.org/docs/stable/torch.html?highlight=mm#mathoperations

Building blocks, computational graph

 $b = w_1 * a$

 $c = w_2 * a$

 $d = w_3 \ast b + w_4 \ast c$

L = 10 - d

∂L	$-=\frac{\partial}{\partial}$	$\frac{L}{*}$	∂d
∂w_4	д	d i	∂w_4
$\frac{\partial L}{\partial w_3}$	$-=rac{\partial}{\partial}$	$\frac{L}{d} * \frac{1}{d}$	$\frac{\partial d}{\partial w_3}$
$\frac{\partial L}{\partial w_2} =$	$\frac{\partial L}{\partial d}$	$* \frac{\partial d}{\partial c}$	$* \frac{\partial c}{\partial w}$
$\frac{\partial L}{\partial w_1} =$	$\frac{\partial L}{\partial d}$,	$*\frac{\partial d}{\partial b}$	$*\frac{\partial b}{\partial w}$

Building blocks, computational graph

Andrey Ustyuzhanin, NRU HSE

Gradient and tensors

>> t1 = torch.randn((3,3), requires_grad = True)

>> t2 = torch.FloatTensor(3,3) # No way to specify requi
>> t2.requires_grad = True

Each Tensor has

- an attribute grad_fn, which refers to the mathematical operator that create the variable;
- an attribute **grad**, which contains gradient value per tensor element

If Tensor is a leaf node (initialised by the user), then the **grad_fn** is also **None**.

```
import torch
a = torch.randn((3,3), requires_grad = True)
w1 = torch.randn((3,3), requires_grad = True)
w2 = torch.randn((3,3), requires_grad = True)
w3 = torch.randn((3,3), requires grad = True)
w4 = torch.randn((3,3), requires grad = True)
b = w1*a
c = w2*a
d = w3*b + w4*c
L = 10 - d
print("The grad fn for a is", a.grad fn)
print("The grad fn for d is", d.grad fn)
```

The grad fn for a is None The grad fn for d is <AddBackward0 object at 0x1033afe48>

Functions

- All math operations performed by *torch.autograd.Function* children
 - forward, computes node output and buffers it
 - Backward, stores incoming gradient and passes further up

```
def backward (incoming_gradients):
    self.Tensor.grad = incoming_gradients
    for inp in self.inputs:
        if inp.grad_fn is not None:
            new_incoming_gradients = //
            incoming_gradient * local_grad(self.Tensor, inp)
            inp.grad_fn.backward(new_incoming_gradients)
        else:
            pass
```

 w_3b

 $w_{4}c$

Local Gradients

+

d

From backward() to gradient descent

Replace L.backward() with
L.backward(torch.ones(L.shape))

w1 = w1 - learning_rate * w1.grad

Dynamic graph

- After calling *forward* the intermediate node variables are created;
- Then, the buffers for the non-leaf nodes allocated for the graph and intermediate values used for computing gradients later. When you call backward, as the gradients are computed, these buffers are essentially freed, and the graph is destroyed;
- Next time, you call *forward* on the same set of tensors, the leaf node buffers from the previous run will be shared, while the non-leaf nodes buffers will be created again.
- If retain_graph = True passed to the backward function, the graph is not recreated, and the computed gradients will be added to the previous iteration values.

Gradient cleaning

- Due to the flexibility of the network architecture, it is not obvious when does iteration of a gradient descent stops, so *backward's* gradients are accumulated each time a variable (Tensor) occurs in the graph;
- It is usually desired for RNN cases;
- If you do not need to accumulate those, you must clean previous gradient values at the end of each iteration:
 - Either by x.data.zero_() for every model tensor x;
 - Or by optimizers's *zero_grad()* method (preferred).

Freezing weights

- Requires_grad attribute of the Tensor class. By default, it's False. It comes handy when you must freeze some layers and stop them from updating parameters while training.
- Thus, no gradient would be propagated to them, or to those layers which depend upon these layers for gradient flow requires_grad.
- When set to True, requires_grad is contagious: even if one operand of an operation has requires_grad set to True, so will the result.

Pre-trained models enhancement

model = torchvision.models.resnet18(pretrained=True)

```
for param in model.parameters():
```

```
param.requires_grad = False
```

```
# Replace the last fully-connected layer
```

Parameters of newly constructed modules have requires_grad=True by
default

```
model.fc = nn.Linear(512, 100)
```

Optimize only the classifier

```
optimizer = optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9)
```

Inference

- When we are computing gradients, we need to cache input values, and intermediate features as they maybe required to compute the gradient later. The gradient of b=w1 *aw.r.t it's inputs w1 and a is a and w1 respectively. We need to store these values for gradient computation during the backward pass. This affects the memory footprint of the network.
- While, we are performing inference, we don't compute gradients, and thus, don't need to store these values. Infact, no graph needs to be create during inference as it will lead to useless consumption of memory.

GPU, TPU support

torch.cuda.is_available	<i>‡</i> ‡	check for cuda
x.cuda()	<i>‡</i> ‡	move x's data from
	<i>‡</i> ‡	CPU to GPU and return new object
x.cpu()	<i>‡</i> <i>‡</i>	move x's data from GPU to CPU
	#	and return new object
if not args.disable cuda and torch.cuda.is available():	#	device agnostic code
args device = torch device('cuda')		and modularity
	1F 	and modulally
else:	7F	
args.device = torch.device('cpu')	1 F	
net.to(device)	<i></i> #	recursively convert their
		parameters and huffers to
	Tr JL	device energific tencers
	1F	device specific tensors
mytensor.to(device)	#	copy your tensors to a device
	<i>#</i>	(gnu, cnu)
	11	(Brd) opd)

- https://pytorch.org/docs/stable/cuda.html
- http://pytorch.org/xla/release/1.5/index.html

torch.nn.Module

```
import torch.nn as nn
import torch.nn.functional as F
```

```
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)
```

```
def forward(self, x):
    x = F.relu(self.conv1(x))
    return F.relu(self.conv2(x))
```

Loss functions

nn.X

where X is BCELoss, CrossEntropyLoss, # L1Loss, MSELoss, NLLLoss, SoftMarginLoss, # MultiLabelSoftMarginLoss, CosineEmbeddingLoss, # KLDivLoss, MarginRankingLoss, HingeEmbeddingLoss # or CosineEmbeddingLoss

https://pytorch.org/docs/stable/nn.html#loss-functions

Activation functions

nn.X

where X is ReLU, ReLU6, ELU, SELU, PReLU, LeakyReLU, # Threshold, HardTanh, Sigmoid, Tanh, # LogSigmoid, Softplus, SoftShrink, # Softsign, TanhShrink, Softmin, Softmax, # Softmax2d or LogSoftmax

https://pytorch.org/docs/stable/nn.html#non-linear-activationsweighted-sum-nonlinearity

Optimizers

```
opt = optim.x(model.parameters(), ...)
opt.step()
optim.X
```

create optimizer
update weights
where X is SGD, Adadelta, Adagrad, Adam,
SparseAdam, Adamax, ASGD,
LBFGS, RMSProp or Rprop

https://pytorch.org/docs/stable/optim.html

Data Utils

Datasets

Dataset TensorDataset Concat Dataset # abstract class representing dataset
labelled dataset in the form of tensors
concatenation of Datasets

https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.Dataset

Dataloaders and DataSamplers

<pre>DataLoader(dataset, batch_size=1,)</pre>	<i># loads data batches agnostic</i> <i># of structure of individual data points</i>
<pre>sampler.Sampler(dataset,)</pre>	<i>♯ abstract class dealing with</i> <i>♯ ways to sample from dataset</i>
sampler.XSampler where	♯ Sequential, Random, Subset, ♯ WeightedRandom or Distributed

https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader
Andrey Ustyuzhanin, NRU HSE

Ecosystem

- PyTorch lightning
- PyTorch geometric
- Hydra
- Horovod
- Skorch
- Captum
- And many others, see <u>https://pytorch.org/ecosystem/</u>

Moar stuff

- https://pytorch.org/docs/stable/index.html
- https://pytorch.org/tutorials/beginner/ptcheat.html
- http://neuralnetworksanddeeplearning.com/chap2.html
- https://www.khanacademy.org/math/differential-calculus/dc-chain
- https://blog.paperspace.com/pytorch-101-understanding-graphs-andautomatic-differentiation/
- https://github.com/yandexdataschool/mlhep2019/blob/master/notebo oks/day-3/seminar_pytorch.ipynb

Conclusion

- PyTorch is a solid, flexible, production-ready foundation for real-life deep-learning applications
- Building blocks:
 - Tensors
 - Functions
- Dynamic graph automatic differentiation
 - CPU, GPU, TPU
- Rich ecosystem

Thank you!

Andrey Ustyuzhanin

Andrey Ustyuzhanin, NRU HSE