
Network Regularization
Weight initialization, dropout, batch normalization

Artem Maevskiy, Andrey Ustyuzhanin

National Research University Higher School of Economics
MISiS National University of Science and Technology

March, 2021

MISiS Mega Science, Spring Semester

›

Why care about weight initialization?

Initialization with a constant (?)

Andrey Ustyuzhanin

𝑥!

𝑥"

𝑥#

…

"𝑥!

"𝑥"

"𝑥#!

…

"𝑥!

"𝑥"

"𝑥#!

… #𝑦

𝑊!!
𝑊!"𝑊"!

𝑊""

𝑊!!!

𝑔 ⋅

𝑔 ⋅

𝑔 ⋅

Dense
layer

Activation
layer

Dense
layer

Hidden layer

%"𝑥!

%"𝑥"

!"𝑥"$$

…

%"𝑥!

%"𝑥"

$%𝑥#!!

…

𝑔 ⋅

𝑔 ⋅

𝑔 ⋅

Dense
layer

Activation
layer

Hidden layer

𝑊!!%

𝑊!"%𝑊"!
%

𝑊""
%

𝑊"!!"!
#

𝑤!

𝑤"

𝑤#!!

▶ What happens if we initialize all weights with the same value?
▶ Within each layer, the gradients for each of the weights will be the

same as well ⇒ updates will be the same ⇒ network degrades!

Initialization with a constant (?)

Andrey Ustyuzhanin

𝑥!

𝑥"

𝑥#

…

"𝑥!

"𝑥"

"𝑥#!

…

"𝑥!

"𝑥"

"𝑥#!

… #𝑦

𝑊!!
𝑊!"𝑊"!

𝑊""

𝑊!!!

𝑔 ⋅

𝑔 ⋅

𝑔 ⋅

Dense
layer

Activation
layer

Dense
layer

Hidden layer

%"𝑥!

%"𝑥"

!"𝑥"$$

…

%"𝑥!

%"𝑥"

$%𝑥#!!

…

𝑔 ⋅

𝑔 ⋅

𝑔 ⋅

Dense
layer

Activation
layer

Hidden layer

𝑊!!%

𝑊!"%𝑊"!
%

𝑊""
%

𝑊"!!"!
#

𝑤!

𝑤"

𝑤#!!

▶ What happens if we initialize all weights with the same value?
▶ Within each layer, the gradients for each of the weights will be the

same as well ⇒ updates will be the same ⇒ network degrades!

Initialization with a constant (?)

Andrey Ustyuzhanin

▶ Ok, so constant initialization is a bad idea
▶ So, any random initialization should be fine, right?

Some intuition

Andrey Ustyuzhanin

!𝑦 = 𝑊!"# ⋅ … ⋅ 𝑊$% ⋅ 𝑊$&𝑥

▶ For simplicity, let’s omit the activation functions for now
▶ Then, the output of a neural network composed of dense layers only is:

Some intuition

Andrey Ustyuzhanin

!𝑦 = 𝑊!"# ⋅ … ⋅ 𝑊$% ⋅ 𝑊$&𝑥

▶ For simplicity, let’s omit the activation functions for now
▶ Then, the output of a neural network composed of dense layers only is:

▶ Note that gradient wrt to any of the weight matrices 𝑊!" is proportional to the
product of all other matrices

Some intuition

Andrey Ustyuzhanin

!𝑦 = 𝑊!"# ⋅ … ⋅ 𝑊$% ⋅ 𝑊$&𝑥

▶ For simplicity, let’s omit the activation functions for now
▶ Then, the output of a neural network composed of dense layers only is:

▶ Note that gradient wrt to any of the weight matrices 𝑊!" is proportional to the
product of all other matrices

▶ E.g. for 1×1 matrices, if all are of scale 𝑆 ∈ ℝ, the gradient 𝑔 is proportional to:

𝑔 ∼ 𝑆#$%

▶ where 𝑚 is the depth of the network

Some intuition

Andrey Ustyuzhanin

!𝑦 = 𝑊!"# ⋅ … ⋅ 𝑊$% ⋅ 𝑊$&𝑥

▶ For simplicity, let’s omit the activation functions for now
▶ Then, the output of a neural network composed of dense layers only is:

▶ Note that gradient wrt to any of the weight matrices 𝑊!" is proportional to the
product of all other matrices

▶ E.g. for 1×1 matrices, if all are of scale 𝑆 ∈ ℝ, the gradient 𝑔 is proportional to:

𝑔 ∼ 𝑆#$%

▶ where 𝑚 is the depth of the network

▶ For 𝑆 too large, the gradients will explode; for 𝑆 too small,
they will vanish

Some intuition

Andrey Ustyuzhanin

▶ More generally:
𝜕𝐋𝐨𝐬𝐬
𝜕𝑊!

=
𝜕𝐋𝐨𝐬𝐬

𝜕𝐎𝐮𝐭𝐩𝐮𝐭!
⋅
𝜕𝐃𝐞𝐧𝐬𝐞!
𝜕𝑊!

=
𝜕𝐋𝐨𝐬𝐬

𝜕𝐎𝐮𝐭𝐩𝐮𝐭!"#
⋅
𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

⋅ 𝐎𝐮𝐭𝐩𝐮𝐭!$#

𝐃𝐞𝐧𝐬𝐞&
𝐎𝐮𝐭𝐩𝐮𝐭!"# 𝐎𝐮𝐭𝐩𝐮𝐭!

𝒙 … … Loss
𝑊!

𝐋𝐚𝐲𝐞𝐫&,%
𝐎𝐮𝐭𝐩𝐮𝐭!$𝟏

Some intuition

Andrey Ustyuzhanin

▶ More generally:
𝜕𝐋𝐨𝐬𝐬
𝜕𝑊!

=
𝜕𝐋𝐨𝐬𝐬

𝜕𝐎𝐮𝐭𝐩𝐮𝐭!
⋅
𝜕𝐃𝐞𝐧𝐬𝐞!
𝜕𝑊!

=
𝜕𝐋𝐨𝐬𝐬

𝜕𝐎𝐮𝐭𝐩𝐮𝐭!"#
⋅
𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

⋅ 𝐎𝐮𝐭𝐩𝐮𝐭!$#

𝐃𝐞𝐧𝐬𝐞&
𝐎𝐮𝐭𝐩𝐮𝐭!"# 𝐎𝐮𝐭𝐩𝐮𝐭!

𝒙 … … Loss
𝑊!

𝐋𝐚𝐲𝐞𝐫&,%
𝐎𝐮𝐭𝐩𝐮𝐭!$𝟏

This will accumulate the product of the
gradients for the subsequent layers

Some intuition

Andrey Ustyuzhanin

▶ More generally:
𝜕𝐋𝐨𝐬𝐬
𝜕𝑊!

=
𝜕𝐋𝐨𝐬𝐬

𝜕𝐎𝐮𝐭𝐩𝐮𝐭!
⋅
𝜕𝐃𝐞𝐧𝐬𝐞!
𝜕𝑊!

=
𝜕𝐋𝐨𝐬𝐬

𝜕𝐎𝐮𝐭𝐩𝐮𝐭!"#
⋅
𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

⋅ 𝐎𝐮𝐭𝐩𝐮𝐭!$#

𝐃𝐞𝐧𝐬𝐞&
𝐎𝐮𝐭𝐩𝐮𝐭!"# 𝐎𝐮𝐭𝐩𝐮𝐭!

𝒙 … … Loss
𝑊!

𝐋𝐚𝐲𝐞𝐫&,%
𝐎𝐮𝐭𝐩𝐮𝐭!$𝟏

This will accumulate the product of the
gradients for the subsequent layers

▶ Idea: for stable learning we would like to “keep” the scale of the gradients at
each step:

Var
𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

⋅
𝜕𝐋𝐚𝐲𝐞𝐫!

𝜕𝐎𝐮𝐭𝐩𝐮𝐭!$#
≈ Var

𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

Some intuition

Andrey Ustyuzhanin

𝐃𝐞𝐧𝐬𝐞&
𝐎𝐮𝐭𝐩𝐮𝐭!"# 𝐎𝐮𝐭𝐩𝐮𝐭!

𝒙 … … Loss
𝑊!

𝐋𝐚𝐲𝐞𝐫&,%
𝐎𝐮𝐭𝐩𝐮𝐭!$𝟏

▶ Similarly, we would also like to not scale the outputs at each step of the
forward pass:

Var 𝐋𝐚𝐲𝐞𝐫!"# 𝐋𝐚𝐲𝐞𝐫! 𝐎𝐮𝐭𝐩𝐮𝐭!$# ≈ Var 𝐋𝐚𝐲𝐞𝐫! 𝐎𝐮𝐭𝐩𝐮𝐭!$#

Random initialization

Andrey Ustyuzhanin

Var 𝐋𝐚𝐲𝐞𝐫!"# 𝐋𝐚𝐲𝐞𝐫! 𝐎𝐮𝐭𝐩𝐮𝐭!$# ≈ Var 𝐋𝐚𝐲𝐞𝐫! 𝐎𝐮𝐭𝐩𝐮𝐭!$#

Var
𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

⋅
𝜕𝐋𝐚𝐲𝐞𝐫!

𝜕𝐎𝐮𝐭𝐩𝐮𝐭!$#
≈ Var

𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

Random initialization

Andrey Ustyuzhanin

▶ Generally, these two requirements may contradict each other
▶ E.g. for ReLU activation they result in initialization requirements, respectively:

Var 𝐋𝐚𝐲𝐞𝐫!"# 𝐋𝐚𝐲𝐞𝐫! 𝐎𝐮𝐭𝐩𝐮𝐭!$# ≈ Var 𝐋𝐚𝐲𝐞𝐫! 𝐎𝐮𝐭𝐩𝐮𝐭!$#

Var
𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

⋅
𝜕𝐋𝐚𝐲𝐞𝐫!

𝜕𝐎𝐮𝐭𝐩𝐮𝐭!$#
≈ Var

𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

𝑉𝑎𝑟 𝑊!& =
2

outgoing connections

𝑉𝑎𝑟 𝑊!& =
2

incoming connections

Random initialization

Andrey Ustyuzhanin

▶ Generally, these two requirements may contradict each other
▶ E.g. for ReLU activation they result in initialization requirements, respectively:

Var 𝐋𝐚𝐲𝐞𝐫!"# 𝐋𝐚𝐲𝐞𝐫! 𝐎𝐮𝐭𝐩𝐮𝐭!$# ≈ Var 𝐋𝐚𝐲𝐞𝐫! 𝐎𝐮𝐭𝐩𝐮𝐭!$#

Var
𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

⋅
𝜕𝐋𝐚𝐲𝐞𝐫!

𝜕𝐎𝐮𝐭𝐩𝐮𝐭!$#
≈ Var

𝜕𝐋𝐚𝐲𝐞𝐫!"#
𝜕𝐎𝐮𝐭𝐩𝐮𝐭!

𝑉𝑎𝑟 𝑊!& =
2

outgoing connections

𝑉𝑎𝑟 𝑊!& =
2

incoming connections

▶ Typically you can just choose one of them, or alternatively
average them out:

𝑉𝑎𝑟 𝑊'(=
4

outgoing connections + # incoming connections

›

Overfitting with neural networks

The problem of overfitting

Andrey Ustyuzhanin

▶ Being highly complex models, neural networks are prone to overfitting

train
validation

The problem of overfitting

Andrey Ustyuzhanin

▶ Being highly complex models, neural networks are prone to overfitting

▶ Regularization techniques like L1/L2 regularization are also available for neural networks
▶ We also discussed early stopping (i.e. stop the training before validation error grows)

train
validation

Dropout

Andrey Ustyuzhanin

Image from:
http://jmlr.org/papers/v15/srivastava14a.html▶ At train time – sets neuron

activations to 0 with a given
probability 𝑝

http://jmlr.org/papers/v15/srivastava14a.html

Dropout

Andrey Ustyuzhanin

Image from:
http://jmlr.org/papers/v15/srivastava14a.html▶ At train time – sets neuron

activations to 0 with a given
probability 𝑝

▶ At test time – multiplies the
activation by 𝑝
– i.e. sets it to the expected value

http://jmlr.org/papers/v15/srivastava14a.html

Dropout

Andrey Ustyuzhanin

Image from:
http://jmlr.org/papers/v15/srivastava14a.html▶ At train time – sets neuron

activations to 0 with a given
probability 𝑝

▶ At test time – multiplies the
activation by 𝑝
– i.e. sets it to the expected value

▶ Makes neuron learn to work with a
randomly chosen sample of other
neurons

http://jmlr.org/papers/v15/srivastava14a.html

Dropout

Andrey Ustyuzhanin

Image from:
http://jmlr.org/papers/v15/srivastava14a.html▶ At train time – sets neuron

activations to 0 with a given
probability 𝑝

▶ At test time – multiplies the
activation by 𝑝
– i.e. sets it to the expected value

▶ Makes neuron learn to work with a
randomly chosen sample of other
neurons

▶ Drives it towards creating useful features rather than
relying on other neurons to correct its mistakes

http://jmlr.org/papers/v15/srivastava14a.html

Example from before

Andrey Ustyuzhanin

No regularization

No regularization

Dropout

Dropout

train
validation

Lo
ss

Lo
ss

In this example, dropout
results in a much better

(though still not perfect) fit
with lower test error

train
validation

›

Normalization layers

Batch normalization

Andrey Ustyuzhanin

▶ This technique was originally proposed to mitigate the
“internal covariate shift” internal covariate shift

the updates in one layer
change the input distributions

of the subsequent layers

Batch normalization

Andrey Ustyuzhanin

▶ This technique was originally proposed to mitigate the
“internal covariate shift”

▶ Works as follows (layer inputs 𝑥&, outputs 𝑦&):
– calculate sample mean and variance of the input on a single batch
𝐵

internal covariate shift
the updates in one layer

change the input distributions
of the subsequent layers

𝜎=> =
1
𝐵
9
&∈=

𝑥& − 𝜇= >𝜇= =
1
𝐵
9
&∈=

𝑥&

Batch normalization

Andrey Ustyuzhanin

▶ This technique was originally proposed to mitigate the
“internal covariate shift”

▶ Works as follows (layer inputs 𝑥&, outputs 𝑦&):
– calculate sample mean and variance of the input on a single batch
𝐵

internal covariate shift
the updates in one layer

change the input distributions
of the subsequent layers

𝜎=> =
1
𝐵
9
&∈=

𝑥& − 𝜇= >𝜇= =
1
𝐵
9
&∈=

𝑥&

𝑦& = 𝛾 ⋅
𝑥& − 𝜇=
𝜎=> + 𝜖

+ 𝛽

– normalize the input, then scale and shift (with the trainable parameters 𝛾,
𝛽):

▶ Turned out to be extremely powerful in many cases
– Faster and more stable convergence

Batch normalization

Andrey Ustyuzhanin

internal covariate shift
the updates in one layer

change the input distributions
of the subsequent layers

▶ Turned out to be extremely powerful in many cases
– Faster and more stable convergence

▶ Later was proved to not reduce the internal covariate shift

Batch normalization

Andrey Ustyuzhanin

internal covariate shift
the updates in one layer

change the input distributions
of the subsequent layers

▶ Turned out to be extremely powerful in many cases
– Faster and more stable convergence

▶ Later was proved to not reduce the internal covariate shift

▶ Effectively removes the ‘shift’ and ‘scale’ degrees of freedom from the previous
layer

Batch normalization

Andrey Ustyuzhanin

internal covariate shift
the updates in one layer

change the input distributions
of the subsequent layers

𝑦? = 𝛾 ⋅
𝑥? − 𝜇@
𝜎@% + 𝜖

+ 𝛽

Batch normalization

Andrey Ustyuzhanin

▶ Which dimension to normalize over? Typically like this:

– Batch of 1D vectors [Batch_dim x Features_dim]
– separately for each component in Features_dim, i.e. over Batch_dim

Batch normalization

Andrey Ustyuzhanin

▶ Which dimension to normalize over? Typically like this:

– Batch of 1D vectors [Batch_dim x Features_dim]
– separately for each component in Features_dim, i.e. over Batch_dim

– Batch of ND objects [Batch_dim x Spacial_dim1 x … x Channel_dim]
– separately for each component in Channel_dim, i.e. over Batch_dim x Spacial_dim1 x …

Batch normalization

Andrey Ustyuzhanin

Image from
https://arxiv.org/pdf/1803.08494.pd

f

Spatial dimensions

Channels

Batch dimension

https://arxiv.org/pdf/1803.08494.pdf

Batch normalization at inference time

Andrey Ustyuzhanin

▶ Calculating batch statistics at test time may be problematic
– e.g. when there’s a single object to predict

▶ Instead: calculate running mean and variance during training, apply at test time

Example: CNN on MNIST

Andrey Ustyuzhanin

(shown: moving average loss)

Summary

Andrey Ustyuzhanin

▶ If done wrong, weight initialization may cause the gradients to vanish or
explode

▶ Neural networks can be regularized with L1/L2 penalties or early stopping
▶ Dropout makes neurons create useful features rather than rely on other neurons

to correct their mistakes
▶ Batch normalization is an extremely powerful regularization technique, though

the reason for that is not entirely clear

▶ Food for thought: how exactly would you implement an early
stopping rule?

Quiz / Questions

A. 2
B. 64 ß ß ß ß

C. 128
D. 256
E. 1048576

Andrey Ustyuzhanin

How many (scalar) trainable parameters does a Batch Normalization layer have when applied after a
2D convolution with output size of [batch_size=64, height=128, width=128, channels=32]?

Image by: pixabay.com/users/alexas_fotos-686414/

https://pixabay.com/users/alexas_fotos-686414/

