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›

Why care about weight initialization?



Initialization with a constant (?)
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▶ What happens if we initialize all weights with the same value?
▶ Within each layer, the gradients for each of the weights will be the 

same as well ⇒ updates will be the same ⇒ network degrades!
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▶ Ok, so constant initialization is a bad idea
▶ So, any random initialization should be fine, right?
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▶ For simplicity, let’s omit the activation functions for now
▶ Then, the output of a neural network composed of dense layers only is:
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!𝑦 = 𝑊!"# ⋅ … ⋅ 𝑊$% ⋅ 𝑊$&𝑥

▶ For simplicity, let’s omit the activation functions for now
▶ Then, the output of a neural network composed of dense layers only is:

▶ Note that gradient wrt to any of the weight matrices 𝑊!" is proportional to the 
product of  all other matrices

▶ E.g. for 1×1 matrices, if all are of scale 𝑆 ∈ ℝ, the gradient 𝑔 is proportional to:

𝑔 ∼ 𝑆#$%

▶ where 𝑚 is the depth of the network

▶ For 𝑆 too large, the gradients will explode; for 𝑆 too small, 
they will vanish
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▶ Generally, these two requirements may contradict each other
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▶ Typically you can just choose one of them, or alternatively 
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Overfitting with neural networks
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▶ Being highly complex models, neural networks are prone to overfitting

train
validation
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▶ Being highly complex models, neural networks are prone to overfitting

▶ Regularization techniques like L1/L2 regularization are also available for neural networks
▶ We also discussed early stopping (i.e. stop the training before validation error grows)

train
validation
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Image from:
http://jmlr.org/papers/v15/srivastava14a.html▶ At train time – sets neuron 

activations to 0 with a given 
probability 𝑝

▶ At test time – multiplies the 
activation by 𝑝
– i.e. sets it to the expected value

▶ Makes neuron learn to work with a 
randomly chosen sample of other 
neurons

▶ Drives it towards creating useful features rather than 
relying on other neurons to correct its mistakes

http://jmlr.org/papers/v15/srivastava14a.html
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Dropout
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In this example, dropout 
results in a much better 

(though still not perfect) fit 
with lower test error

train
validation
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Normalization layers
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▶ This technique was originally proposed to mitigate the 
“internal covariate shift”

▶ Works as follows (layer inputs 𝑥&, outputs 𝑦&):
– calculate sample mean and variance of the input on a single batch 
𝐵
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𝜎=> =
1
𝐵
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𝑦& = 𝛾 ⋅
𝑥& − 𝜇=
𝜎=> + 𝜖

+ 𝛽

– normalize the input, then scale and shift (with the trainable parameters 𝛾, 
𝛽):
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▶ Turned out to be extremely powerful in many cases
– Faster and more stable convergence

▶ Later was proved to not reduce the internal covariate shift

▶ Effectively removes the ‘shift’ and ‘scale’ degrees of freedom from the previous 
layer

Batch normalization
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internal covariate shift
the updates in one layer 

change the input distributions 
of the subsequent layers

𝑦? = 𝛾 ⋅
𝑥? − 𝜇@
𝜎@% + 𝜖

+ 𝛽
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– Batch of 1D vectors [Batch_dim x Features_dim]
– separately for each component in Features_dim, i.e. over Batch_dim
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▶ Which dimension to normalize over? Typically like this:

– Batch of 1D vectors [Batch_dim x Features_dim]
– separately for each component in Features_dim, i.e. over Batch_dim

– Batch of ND objects [Batch_dim x Spacial_dim1 x … x Channel_dim]
– separately for each component in Channel_dim, i.e. over Batch_dim x Spacial_dim1 x …
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Image from 
https://arxiv.org/pdf/1803.08494.pd

f

Spatial dimensions

Channels

Batch dimension

https://arxiv.org/pdf/1803.08494.pdf
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▶ Calculating batch statistics at test time may be problematic
– e.g. when there’s a single object to predict

▶ Instead: calculate running mean and variance during training, apply at test time



Example: CNN on MNIST
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(shown: moving average loss)
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▶ If done wrong, weight initialization may cause the gradients to vanish or 
explode

▶ Neural networks can be regularized with L1/L2 penalties or early stopping
▶ Dropout makes neurons create useful features rather than rely on other neurons 

to correct their mistakes
▶ Batch normalization is an extremely powerful regularization technique, though 

the reason for that is not entirely clear

▶ Food for thought: how exactly would you implement an early 
stopping rule?



Quiz / Questions

A. 2
B. 64 ß ß ß ß

C. 128
D. 256
E. 1048576
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How many (scalar) trainable parameters does a Batch Normalization layer have when applied after a 
2D convolution with output size of [batch_size=64, height=128, width=128, channels=32]?

Image by: pixabay.com/users/alexas_fotos-686414/
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