Network Regularization

Weight initialization, dropout, batch normalization

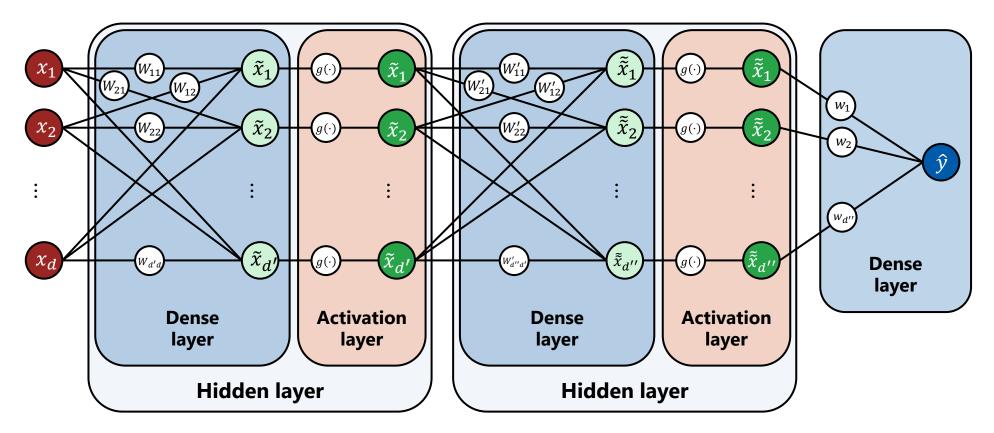
MISiS Mega Science, Spring Semester

Artem Maevskiy, Andrey Ustyuzhanin

National Research University Higher School of Economics MISiS National University of Science and Technology

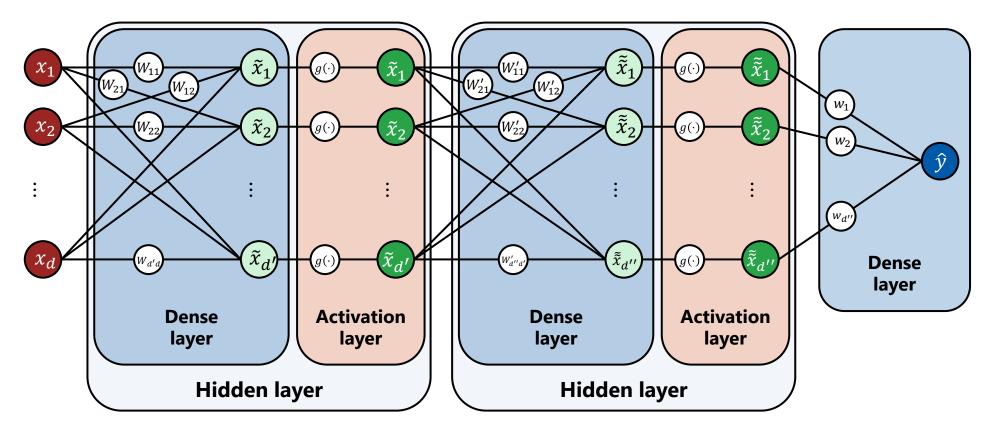
Why care about weight initialization?

Initialization with a constant (?)



What happens if we initialize all weights with the same value?

Initialization with a constant (?)



- What happens if we initialize all weights with the same value?
- Within each layer, the gradients for each of the weights will be the same as well ⇒ updates will be the same ⇒ network degrades!

Initialization with a constant (?)

- Ok, so constant initialization is a bad idea
- So, any random initialization should be fine, right?

- For simplicity, let's omit the activation functions for now
- Then, the output of a neural network composed of dense layers only is:

$$\hat{y} = W_{out} \cdot \ldots \cdot W_{h2} \cdot W_{h1}x$$

- For simplicity, let's omit the activation functions for now
- Then, the output of a neural network composed of dense layers only is:

$$\hat{y} = W_{out} \cdot \ldots \cdot W_{h2} \cdot W_{h1}x$$

Note that gradient wrt to any of the weight matrices W_{hk} is proportional to the product of all other matrices

- For simplicity, let's omit the activation functions for now
- Then, the output of a neural network composed of dense layers only is:

$$\hat{y} = W_{out} \cdot \ldots \cdot W_{h2} \cdot W_{h1}x$$

- Note that gradient wrt to any of the weight matrices W_{hk} is proportional to the product of all other matrices
- E.g. for 1×1 matrices, if all are of scale $S \in \mathbb{R}$, the gradient g is proportional to:

$$g \sim S^{m-1}$$

where *m* is the **depth** of the network

- For simplicity, let's omit the activation functions for now
- Then, the output of a neural network composed of dense layers only is:

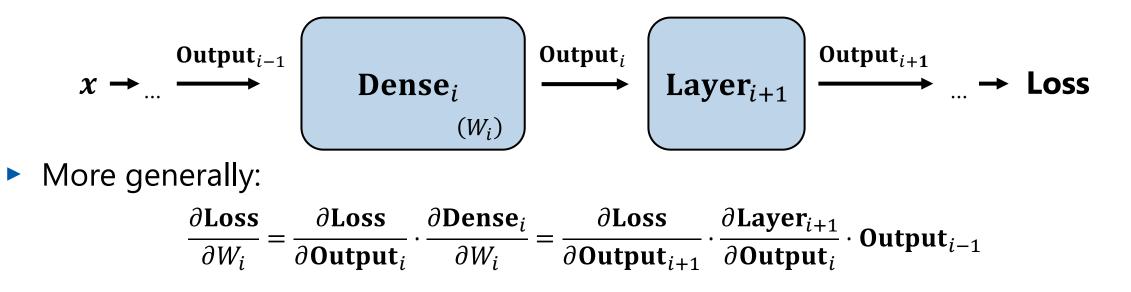
$$\hat{y} = W_{out} \cdot \ldots \cdot W_{h2} \cdot W_{h1} x$$

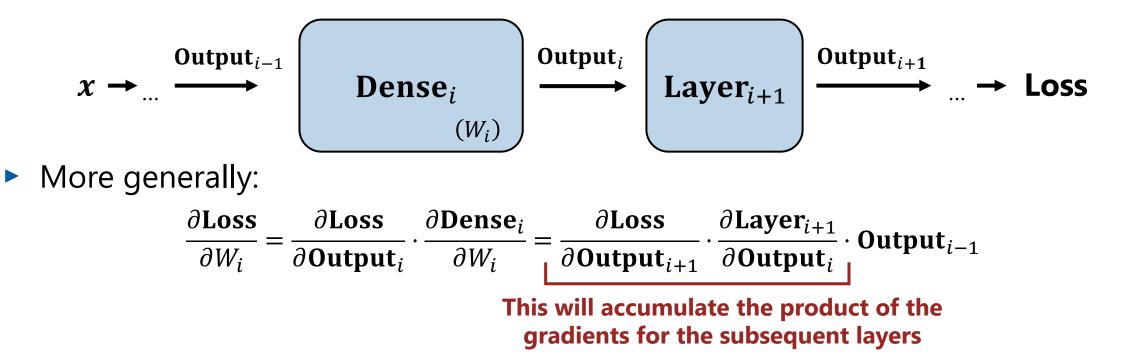
- Note that gradient wrt to any of the weight matrices W_{hk} is proportional to the product of all other matrices
- E.g. for 1×1 matrices, if all are of scale $S \in \mathbb{R}$, the gradient g is proportional to:

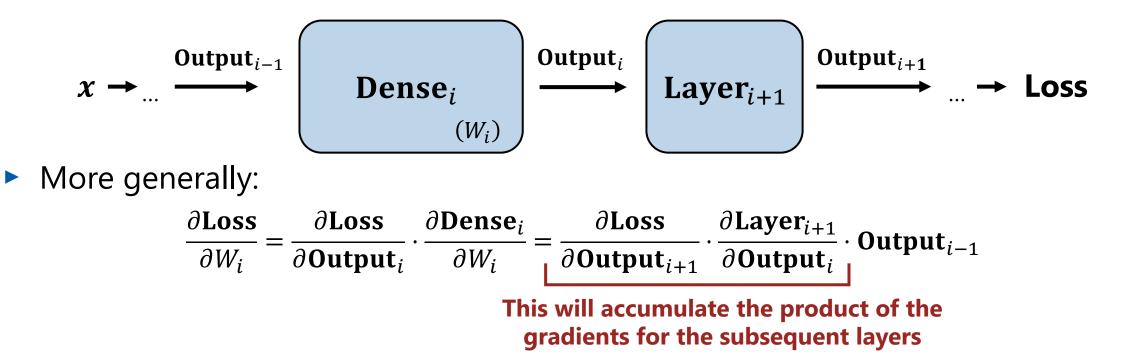
$$g \sim S^{m-1}$$

where *m* is the **depth** of the network

For S too large, the gradients will explode; for S too small, they will vanish

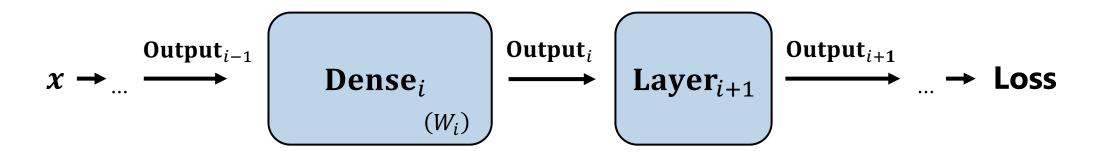






Idea: for stable learning we would like to "keep" the scale of the gradients at each step:

$$\operatorname{Var}\left(\frac{\partial \operatorname{Layer}_{i+1}}{\partial \operatorname{Output}_{i}} \cdot \frac{\partial \operatorname{Layer}_{i}}{\partial \operatorname{Output}_{i-1}}\right) \approx \operatorname{Var}\left(\frac{\partial \operatorname{Layer}_{i+1}}{\partial \operatorname{Output}_{i}}\right)$$



Similarly, we would also like to not scale the outputs at each step of the forward pass:

$$\operatorname{Var}\left(\operatorname{Layer}_{i+1}\left(\operatorname{Layer}_{i}(\operatorname{Output}_{i-1})\right)\right) \approx \operatorname{Var}\left(\operatorname{Layer}_{i}(\operatorname{Output}_{i-1})\right)$$

Random initialization

$$\operatorname{Var}\left(\frac{\partial \operatorname{Layer}_{i+1}}{\partial \operatorname{Output}_{i}} \cdot \frac{\partial \operatorname{Layer}_{i}}{\partial \operatorname{Output}_{i-1}}\right) \approx \operatorname{Var}\left(\frac{\partial \operatorname{Layer}_{i+1}}{\partial \operatorname{Output}_{i}}\right)$$
$$\operatorname{Var}\left(\operatorname{Layer}_{i+1}\left(\operatorname{Layer}_{i}\left(\operatorname{Output}_{i-1}\right)\right)\right) \approx \operatorname{Var}\left(\operatorname{Layer}_{i}\left(\operatorname{Output}_{i-1}\right)\right)$$

Random initialization

$$\operatorname{Var}\left(\frac{\partial \operatorname{Layer}_{i+1}}{\partial \operatorname{Output}_{i}} \cdot \frac{\partial \operatorname{Layer}_{i}}{\partial \operatorname{Output}_{i-1}}\right) \approx \operatorname{Var}\left(\frac{\partial \operatorname{Layer}_{i+1}}{\partial \operatorname{Output}_{i}}\right)$$
$$\operatorname{Var}\left(\operatorname{Layer}_{i+1}\left(\operatorname{Layer}_{i}\left(\operatorname{Output}_{i-1}\right)\right)\right) \approx \operatorname{Var}\left(\operatorname{Layer}_{i}\left(\operatorname{Output}_{i-1}\right)\right)$$

- Generally, these two requirements may contradict each other
- E.g. for ReLU activation they result in initialization requirements, respectively:

$$Var(W_{ij}) = \frac{2}{(\# \text{ outgoing connections})}$$
$$Var(W_{ij}) = \frac{2}{(\# \text{ incoming connections})}$$

Random initialization

$$\operatorname{Var}\left(\frac{\partial \operatorname{Layer}_{i+1}}{\partial \operatorname{Output}_{i}} \cdot \frac{\partial \operatorname{Layer}_{i}}{\partial \operatorname{Output}_{i-1}}\right) \approx \operatorname{Var}\left(\frac{\partial \operatorname{Layer}_{i+1}}{\partial \operatorname{Output}_{i}}\right)$$
$$\operatorname{Var}\left(\operatorname{Layer}_{i+1}\left(\operatorname{Layer}_{i}\left(\operatorname{Output}_{i-1}\right)\right)\right) \approx \operatorname{Var}\left(\operatorname{Layer}_{i}\left(\operatorname{Output}_{i-1}\right)\right)$$

- Generally, these two requirements may contradict each other
- E.g. for ReLU activation they result in initialization requirements, respectively:

$$Var(W_{ij}) = \frac{2}{(\# \text{ outgoing connections})}$$
$$Var(W_{ij}) = \frac{2}{(\# \text{ incoming connections})}$$

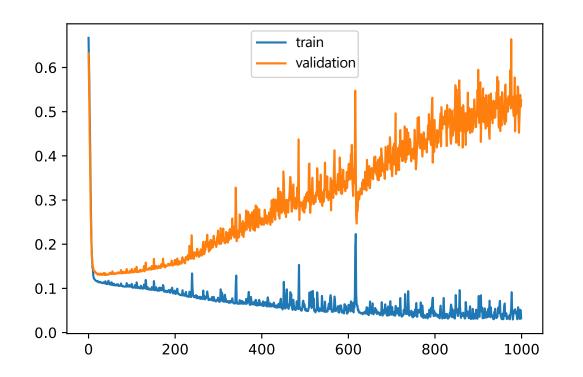
Typically you can just choose one of them, or alternatively average them out:

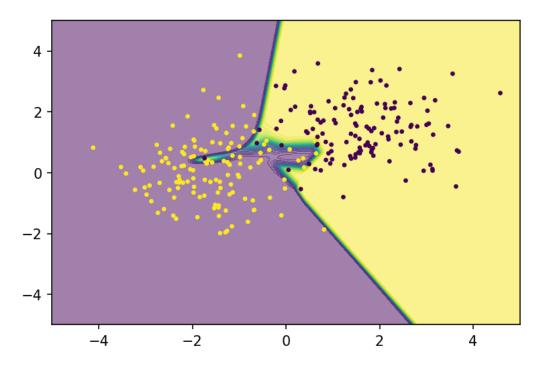
 $Var(W_{ij}) = \frac{4}{(\# \text{ outgoing connections}) + (\# \text{ incoming connections})}$

Overfitting with neural networks

The problem of overfitting

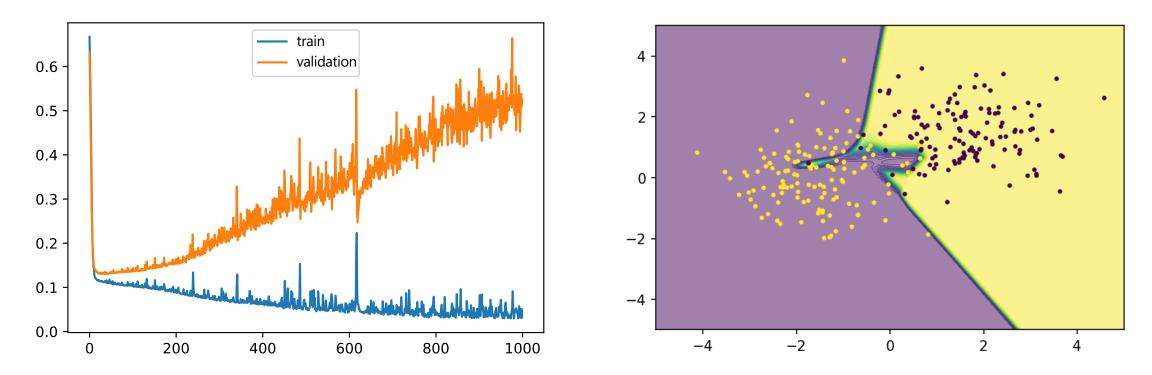
Being highly complex models, neural networks are prone to overfitting





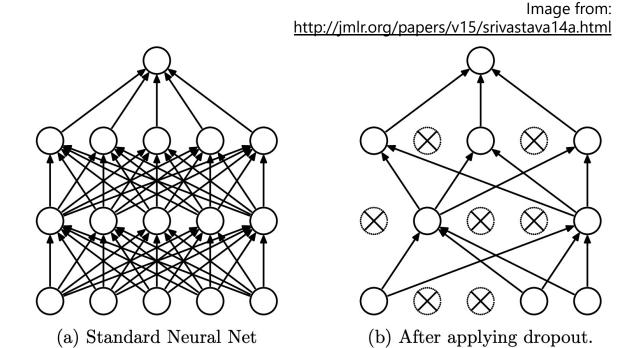
The problem of overfitting

Being highly complex models, neural networks are prone to overfitting

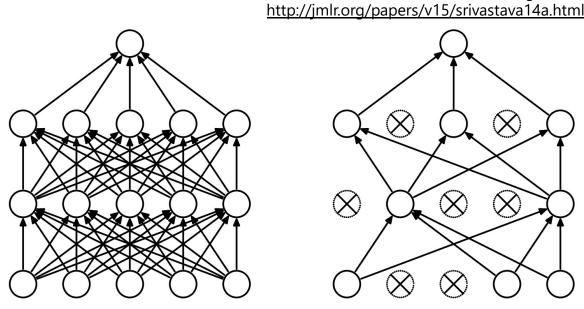


- Regularization techniques like L1/L2 regularization are also available for neural networks
- We also discussed early stopping (i.e. stop the training before validation error grows)

 At train time – sets neuron activations to 0 with a given probability p



- At train time sets neuron activations to 0 with a given probability p
- At test time multiplies the activation by p
 - i.e. sets it to the **expected value**

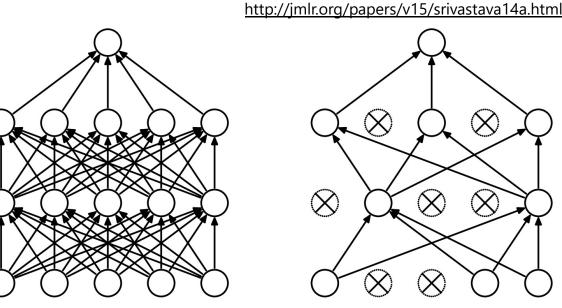


(a) Standard Neural Net

(b) After applying dropout.

Image from:

- At train time sets neuron activations to 0 with a given probability p
- At test time multiplies the activation by p
 - i.e. sets it to the **expected value**
- Makes neuron learn to work with a randomly chosen sample of other neurons

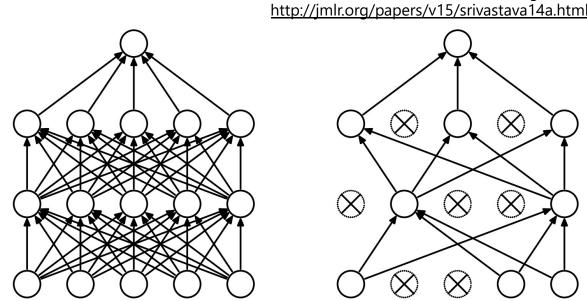


(a) Standard Neural Net

(b) After applying dropout.

Image from:

- At train time sets neuron activations to 0 with a given probability p
- At test time multiplies the activation by p
 - i.e. sets it to the **expected value**
- Makes neuron learn to work with a randomly chosen sample of other



(a) Standard Neural Net

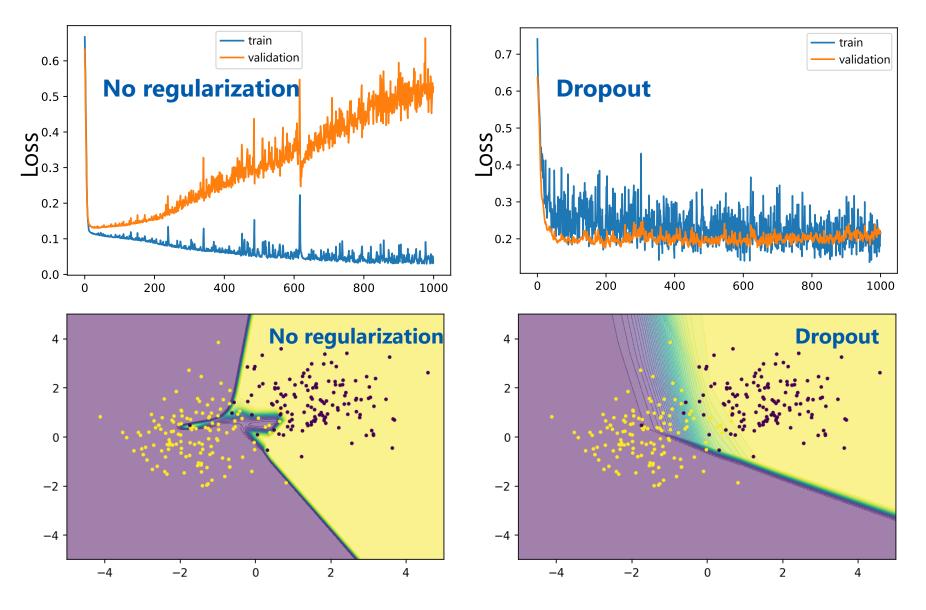
(b) After applying dropout.

Image from:

neurons

Drives it towards creating useful features rather than relying on other neurons to correct its mistakes

Example from before



In this example, dropout results in a much better (though still not perfect) fit with lower test error

Normalization layers

This technique was originally proposed to mitigate the "internal covariate shift"

internal covariate shift

Andrey Ustyuzhanin

Batch normalization

- This technique was originally proposed to mitigate the "internal covariate shift"
- Works as follows (layer inputs x_i , outputs y_i):
 - calculate sample **mean** and **variance** of the input on a single batch B

$$\mu_B = \frac{1}{|B|} \sum_{i \in B} x_i \qquad \sigma_B^2 = \frac{1}{|B|} \sum_{i \in B} (x_i - \mu_B)^2$$

internal covariate shift

Andrey Ustyuzhanin

Batch normalization

- This technique was originally proposed to mitigate the "internal covariate shift"
- Works as follows (layer inputs x_i , outputs y_i):
 - calculate sample **mean** and **variance** of the input on a single batch $\mu_B = \frac{1}{|B|} \sum_{i=1}^{n} x_i \qquad \sigma_B^2 = \frac{1}{|B|} \sum_{i=1}^{n} (x_i - \mu_B)^2$

- **normalize** the input, then **scale and shift** (with the trainable parameters
$$\gamma$$
, β):

$$y_i = \gamma \cdot \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} + \beta$$

internal covariate shift

- Turned out to be **extremely powerful** in many cases
 - Faster and more stable convergence

internal covariate shift

- Turned out to be **extremely powerful** in many cases
 - Faster and more stable convergence
- Later was proved to **not** reduce the internal covariate shift

internal covariate shift

- Turned out to be **extremely powerful** in many cases
 - Faster and more stable convergence
- Later was proved to **not** reduce the internal covariate shift

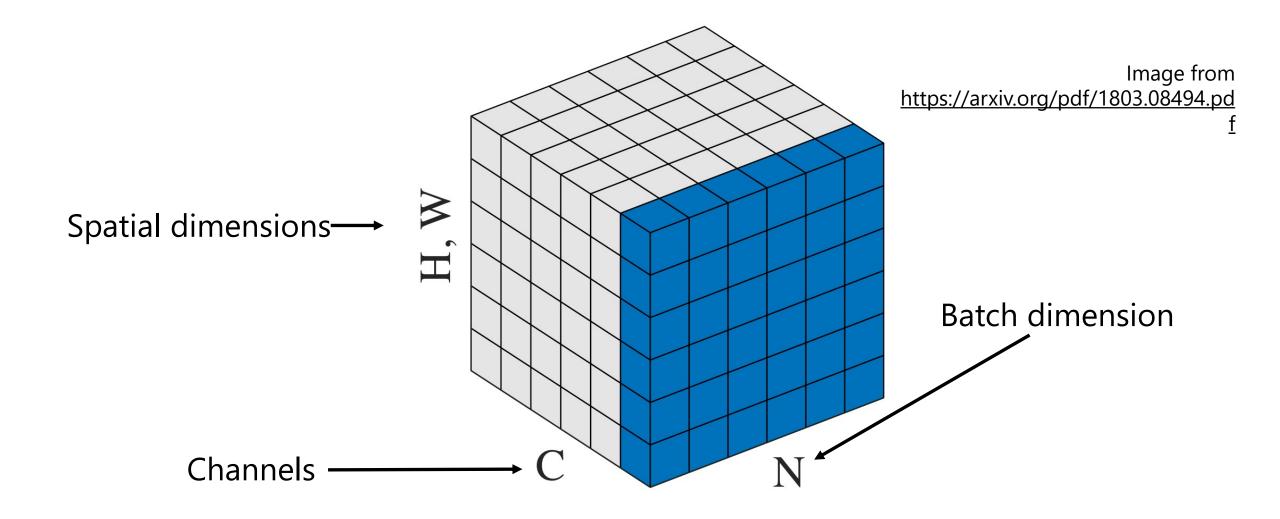
• Effectively **removes** the 'shift' and 'scale' degrees of freedom from the previous layer $\gamma_{i} - \mu_{P}$

$$y_i = \gamma \cdot \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} + \beta$$

internal covariate shift

- Which dimension to normalize over? Typically like this:
 - Batch of 1D vectors [Batch_dim x Features_dim]
 - separately for each component in Features_dim, i.e. over Batch_dim

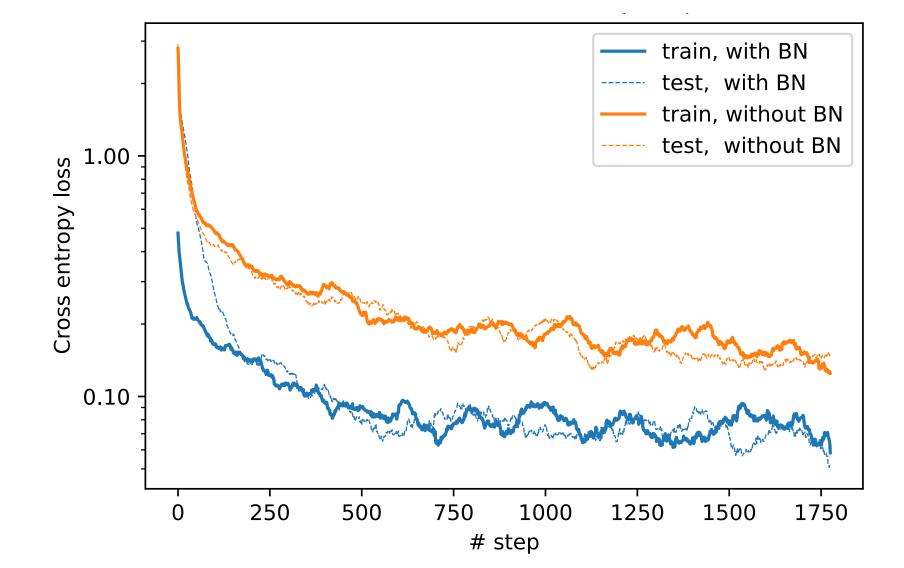
- Which dimension to normalize over? Typically like this:
 - Batch of 1D vectors [Batch_dim x Features_dim]
 - separately for each component in Features_dim, i.e. over Batch_dim
 - Batch of ND objects [Batch_dim x Spacial_dim1 x ... x Channel_dim]
 - separately for each component in Channel_dim, i.e. over Batch_dim x Spacial_dim1 x ...



Batch normalization at inference time

- Calculating batch statistics at test time may be problematic
 - e.g. when there's a single object to predict
- Instead: calculate running mean and variance during training, apply at test time

Example: CNN on MNIST



(shown: moving average loss)

Summary

- If done wrong, weight initialization may cause the gradients to vanish or explode
- Neural networks can be regularized with L1/L2 penalties or early stopping
- Dropout makes neurons create useful features rather than rely on other neurons to correct their mistakes
- Batch normalization is an extremely powerful regularization technique, though the reason for that is not entirely clear
- Food for thought: how exactly would you implement an early stopping rule?

Quiz / Questions

How many (scalar) trainable parameters does a Batch Normalization layer have when applied after a 2D convolution with output size of [batch_size=64, height=128, width=128, channels=32]?

Image by: pixabay.com/users/alexas_fotos-686414/

- A. 2
 B. 64 ← ← ← ←
- **C**. 128
- D. 256
- E. 1048576