
March 2021

Ensembles: bagging, stacking,

blending
MISiS Mega Science, Spring Semester

Nikita Kazeev, Andrey Ustyuzhanin

Lecture overview

After the lecture, you will be able to use the ensemble methods to improve the model

performance.

I Unless you want an overengineered model to win at a competition, you usually don’t

want to do the steps from this lecture by hand

I ...but still might want to understand how to better tune the knobs of the pre-packaged

model you’ll use in practice

Kazeev et al. Ensembles 2 / 17

Lecture overview

After the lecture, you will be able to use the ensemble methods to improve the model

performance.

I Unless you want an overengineered model to win at a competition, you usually don’t

want to do the steps from this lecture by hand

I ...but still might want to understand how to better tune the knobs of the pre-packaged

model you’ll use in practice

Kazeev et al. Ensembles 2 / 17

Lecture overview

After the lecture, you will be able to use the ensemble methods to improve the model

performance.

I Unless you want an overengineered model to win at a competition, you usually don’t

want to do the steps from this lecture by hand

I ...but still might want to understand how to better tune the knobs of the pre-packaged

model you’ll use in practice

Kazeev et al. Ensembles 2 / 17

›

Bagging and Random Forests

3 / 17

Motivation

I The root of all evil in machine learning is the finite amount of data

I When a learning algorithm trains the model, it’s forced between Scylla and Charybdis.

Trust the data too much, and overfit. Trust the data too little, and underfit.

I What if we fight evil with evil and have many versions of the algorithm trained on

different subsets of the dataset so that the biases cancel each other?

Kazeev et al. Ensembles 4 / 17

The bootstrapping procedure
I Input: a sample D = {(xi, yi)}

Picture: http://www.drbunsen.org/bootstrap-in-picture

Kazeev et al. Ensembles 5 / 17

The bootstrapping procedure
I Input: a sample D = {(xi, yi)}

I Bootstrapping: generate new samples X?
j of (xi, yi)

drawn from D uniformly at random with replacement

(replicated (xi, yi) possible!)

Picture: http://www.drbunsen.org/bootstrap-in-picture

Kazeev et al. Ensembles 5 / 17

The bootstrapping procedure
I Input: a sample D = {(xi, yi)}

I Bootstrapping: generate new samples X?
j of (xi, yi)

drawn from D uniformly at random with replacement

(replicated (xi, yi) possible!)

I Bagging (bootstrap aggregating):

1. Generate N bootstrapped samples X?
1, . . . ,X

?
n

2. Learn n models h1, . . . ,hn

3. Average predictions to obtain h(x) = 1
n

∑n
j=1 hj(x)

4. Profit!

Picture: http://www.drbunsen.org/bootstrap-in-picture

Kazeev et al. Ensembles 5 / 17

The Random Forest algorithm

I Bagging over decision trees

I Reduce error via averaging over instances and features

I Input: a sample D = {(xi, yi)}, where xi ∈ X ≡ Rd, yi ∈ Y
I The algorithm iterates for j = 1, . . . ,N:

1. Pick p random features out of d

2. Bootstrap a sample Dj = {(xi, yi)} where xi ∈ Rp, yi ∈ Y
3. Learn a decision tree hj(x) using the bootstrapped Dj

Kazeev et al. Ensembles 6 / 17

The Random Forest algorithm

I Bagging over decision trees

I Reduce error via averaging over instances and features

I Input: a sample D = {(xi, yi)}, where xi ∈ X ≡ Rd, yi ∈ Y
I The algorithm iterates for j = 1, . . . ,N:

1. Pick p random features out of d

2. Bootstrap a sample Dj = {(xi, yi)} where xi ∈ Rp, yi ∈ Y
3. Learn a decision tree hj(x) using the bootstrapped Dj

Kazeev et al. Ensembles 6 / 17

The Random Forest algorithm

I Bagging over decision trees

I Reduce error via averaging over instances and features

I Input: a sample D = {(xi, yi)}, where xi ∈ X ≡ Rd, yi ∈ Y

I The algorithm iterates for j = 1, . . . ,N:

1. Pick p random features out of d

2. Bootstrap a sample Dj = {(xi, yi)} where xi ∈ Rp, yi ∈ Y
3. Learn a decision tree hj(x) using the bootstrapped Dj

Kazeev et al. Ensembles 6 / 17

The Random Forest algorithm

I Bagging over decision trees

I Reduce error via averaging over instances and features

I Input: a sample D = {(xi, yi)}, where xi ∈ X ≡ Rd, yi ∈ Y
I The algorithm iterates for j = 1, . . . ,N:

1. Pick p random features out of d

2. Bootstrap a sample Dj = {(xi, yi)} where xi ∈ Rp, yi ∈ Y
3. Learn a decision tree hj(x) using the bootstrapped Dj

Kazeev et al. Ensembles 6 / 17

The Random Forest algorithm

I Bagging over decision trees

I Reduce error via averaging over instances and features

I Input: a sample D = {(xi, yi)}, where xi ∈ X ≡ Rd, yi ∈ Y
I The algorithm iterates for j = 1, . . . ,N:

1. Pick p random features out of d

2. Bootstrap a sample Dj = {(xi, yi)} where xi ∈ Rp, yi ∈ Y
3. Learn a decision tree hj(x) using the bootstrapped Dj

Kazeev et al. Ensembles 6 / 17

The Random Forest algorithm

I Bagging over decision trees

I Reduce error via averaging over instances and features

I Input: a sample D = {(xi, yi)}, where xi ∈ X ≡ Rd, yi ∈ Y
I The algorithm iterates for j = 1, . . . ,N:

1. Pick p random features out of d

2. Bootstrap a sample Dj = {(xi, yi)} where xi ∈ Rp, yi ∈ Y

3. Learn a decision tree hj(x) using the bootstrapped Dj

Kazeev et al. Ensembles 6 / 17

The Random Forest algorithm

I Bagging over decision trees

I Reduce error via averaging over instances and features

I Input: a sample D = {(xi, yi)}, where xi ∈ X ≡ Rd, yi ∈ Y
I The algorithm iterates for j = 1, . . . ,N:

1. Pick p random features out of d

2. Bootstrap a sample Dj = {(xi, yi)} where xi ∈ Rp, yi ∈ Y
3. Learn a decision tree hj(x) using the bootstrapped Dj

Kazeev et al. Ensembles 6 / 17

Random Forest: synthetic examples

Input data

.95

Decision Tree

.95

Random Forest

.85

QDA

.80 .85 .72

.95 .95 .93

Kazeev et al. Ensembles 7 / 17

Random Forests Bias and Variance

Remember the bias-variance decomposition?

MSE(x) = Ey

[(
y− E[y | x]

)2]︸ ︷︷ ︸
noise

+
(
ED

[
fD (x)

]
− E[y | x]

)2︸ ︷︷ ︸
bias

+ED

[(
fD (x)− ED

[
fD (x)

])2]︸ ︷︷ ︸
variance

Kazeev et al. Ensembles 8 / 17

Bagging and Bias

I Bias: not made any worse by bagging multiple hypotheses

Ey

[(
ED

[1
N

N∑
n=1

f̃D(x)
]
− E[y | x]

)2]
︸ ︷︷ ︸

bias of the ensemble

= Ey

[(1

N

N∑
n=1

ED [̃fD(x)]− E[y | x]
)2]

=

= Ey

[(
ED

[̃
fD(x)

]
− E[y | x]

)2]︸ ︷︷ ︸
bias of the individual model

Kazeev et al. Ensembles 9 / 17

Bagging and Variance

I Variance: Let F = 1
N

∑N
n=1 f̃n(x)

Var(F) =
1

N2

∑
i,j

Cov(̃fi, f̃j) =
1

N2

∑
i

Var(̃fi) +∑
j6=i

Cov(̃fi, f̃j)



I All the models f̃i use the same algorithm, so

Var(F) =
1

N
Var(̃f) +

1

N2

∑
i

∑
j 6=i

Cov(̃fi, f̃j)

I Conclusion: Variance is N times lower for uncorrelated hypotheses, and is unchanged

for fully-correlated.

Kazeev et al. Ensembles 10 / 17

Bagging and Variance

I Variance: Let F = 1
N

∑N
n=1 f̃n(x)

Var(F) =
1

N2

∑
i,j

Cov(̃fi, f̃j) =
1

N2

∑
i

Var(̃fi) +∑
j6=i

Cov(̃fi, f̃j)



I All the models f̃i use the same algorithm, so

Var(F) =
1

N
Var(̃f) +

1

N2

∑
i

∑
j 6=i

Cov(̃fi, f̃j)

I Conclusion: Variance is N times lower for uncorrelated hypotheses, and is unchanged

for fully-correlated.

Kazeev et al. Ensembles 10 / 17

Bagging and Variance

I Variance: Let F = 1
N

∑N
n=1 f̃n(x)

Var(F) =
1

N2

∑
i,j

Cov(̃fi, f̃j) =
1

N2

∑
i

Var(̃fi) +∑
j6=i

Cov(̃fi, f̃j)



I All the models f̃i use the same algorithm, so

Var(F) =
1

N
Var(̃f) +

1

N2

∑
i

∑
j 6=i

Cov(̃fi, f̃j)

I Conclusion: Variance is N times lower for uncorrelated hypotheses, and is unchanged

for fully-correlated.

Kazeev et al. Ensembles 10 / 17

›

Stacked generalisation

11 / 17

Motivation

What if I train an algorithm B
that corrects the mistakes of
algorithm A?

Picture: https://blogs.sas.com

Kazeev et al. Ensembles 12 / 17

https://blogs.sas.com

Blending

I Partition the training dataset D into D1 and D2

I Train models f̃i(x) on D1

I Compute predictions of Zi = f̃i(D2)

I Train the meta-model φ(Z1, . . . ,ZN,D2) on the predictions obtained on the previous

step and features

I Do you see a glaring issue with this approach?

I Both levels are trained on half of the dataset – unacceptable waste in the quest for 1%

performance gain!

Kazeev et al. Ensembles 13 / 17

Blending

I Partition the training dataset D into D1 and D2

I Train models f̃i(x) on D1

I Compute predictions of Zi = f̃i(D2)

I Train the meta-model φ(Z1, . . . ,ZN,D2) on the predictions obtained on the previous

step and features

I Do you see a glaring issue with this approach?

I Both levels are trained on half of the dataset – unacceptable waste in the quest for 1%

performance gain!

Kazeev et al. Ensembles 13 / 17

Blending

I Partition the training dataset D into D1 and D2

I Train models f̃i(x) on D1

I Compute predictions of Zi = f̃i(D2)

I Train the meta-model φ(Z1, . . . ,ZN,D2) on the predictions obtained on the previous

step and features

I Do you see a glaring issue with this approach?

I Both levels are trained on half of the dataset – unacceptable waste in the quest for 1%

performance gain!

Kazeev et al. Ensembles 13 / 17

Stacking

1. Partition train into k folds

2. Just like in cross-validation, k times train

each level-1 model leaving one fold out;

predict on the left-out fold

3. Fit the meta-model on all the level-1

predictions, optionally concatenated

with features

4. For prediction, first evaluate the level-1

models, then the meta-model

Picture: https://rasbt.github.io/mlxtend/user_

guide/regressor/StackingCVRegressor/

Kazeev et al. Ensembles 14 / 17

https://rasbt.github.io/mlxtend/user_guide/regressor/StackingCVRegressor/
https://rasbt.github.io/mlxtend/user_guide/regressor/StackingCVRegressor/

Stacking

1. Partition train into k folds

2. Just like in cross-validation, k times train

each level-1 model leaving one fold out;

predict on the left-out fold

3. Fit the meta-model on all the level-1

predictions, optionally concatenated

with features

4. For prediction, first evaluate the level-1

models, then the meta-model

Picture: https://rasbt.github.io/mlxtend/user_

guide/regressor/StackingCVRegressor/

Kazeev et al. Ensembles 14 / 17

https://rasbt.github.io/mlxtend/user_guide/regressor/StackingCVRegressor/
https://rasbt.github.io/mlxtend/user_guide/regressor/StackingCVRegressor/

Stacking

1. Partition train into k folds

2. Just like in cross-validation, k times train

each level-1 model leaving one fold out;

predict on the left-out fold

3. Fit the meta-model on all the level-1

predictions, optionally concatenated

with features

4. For prediction, first evaluate the level-1

models, then the meta-model

Picture: https://rasbt.github.io/mlxtend/user_

guide/regressor/StackingCVRegressor/

Kazeev et al. Ensembles 14 / 17

https://rasbt.github.io/mlxtend/user_guide/regressor/StackingCVRegressor/
https://rasbt.github.io/mlxtend/user_guide/regressor/StackingCVRegressor/

Summary

I Bootstrapping: a general statistical technique for computing sample functionals (and

their variance)

I Bagging: meta-learner over arbitrary algorithms via bootstrap aggregation

I The Random Forest algorithm: Bagging over decision trees

I Stacking: train a learner on the outputs of other learners

I Blending: a simplified version of stacking

Kazeev et al. Ensembles 15 / 17

Thank you!

nikita.kazeev@cern.ch

anaderiRu

hse_lambda

Kazeev et al. Ensembles 16 / 17

mailto:nikita.kazeev@cern.ch
https://t.me/anaderiRu
https://instagram.com/hse_lambda

Acknowledgements

These slides are based on the slides for for the previous edition of the MLHEP school by

Alexey Artemov.

Kazeev et al. Ensembles 17 / 17

	Bagging and Random Forests
	Stacked generalisation

