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Lecture overview

After the lecture, you will be able to use the ensemble methods to improve the model

performance.

I Unless you want an overengineered model to win at a competition, you usually don’t

want to do the steps from this lecture by hand

I ...but still might want to understand how to better tune the knobs of the pre-packaged

model you’ll use in practice
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›

Bagging and Random Forests
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Motivation

I The root of all evil in machine learning is the finite amount of data

I When a learning algorithm trains the model, it’s forced between Scylla and Charybdis.

Trust the data too much, and overfit. Trust the data too little, and underfit.

I What if we fight evil with evil and have many versions of the algorithm trained on

different subsets of the dataset so that the biases cancel each other?
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The bootstrapping procedure
I Input: a sample D = {(xi, yi)}

Picture: http://www.drbunsen.org/bootstrap-in-picture
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The bootstrapping procedure
I Input: a sample D = {(xi, yi)}

I Bootstrapping: generate new samples X?
j of (xi, yi)

drawn from D uniformly at random with replacement

(replicated (xi, yi) possible!)

I Bagging (bootstrap aggregating):

1. Generate N bootstrapped samples X?
1, . . . ,X

?
n

2. Learn n models h1, . . . ,hn

3. Average predictions to obtain h(x) = 1
n

∑n
j=1 hj(x)

4. Profit!
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The Random Forest algorithm

I Bagging over decision trees

I Reduce error via averaging over instances and features

I Input: a sample D = {(xi, yi)}, where xi ∈ X ≡ Rd, yi ∈ Y
I The algorithm iterates for j = 1, . . . ,N:

1. Pick p random features out of d

2. Bootstrap a sample Dj = {(xi, yi)} where xi ∈ Rp, yi ∈ Y
3. Learn a decision tree hj(x) using the bootstrapped Dj
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Random Forest: synthetic examples

Input data

.95

Decision Tree

.95

Random Forest

.85

QDA

.80 .85 .72

.95 .95 .93
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Random Forests Bias and Variance

Remember the bias-variance decomposition?

MSE(x) = Ey

[(
y− E[y | x]

)2]︸ ︷︷ ︸
noise

+
(
ED

[
fD (x)

]
− E[y | x]

)2︸ ︷︷ ︸
bias

+ED

[(
fD (x)− ED

[
fD (x)

])2]︸ ︷︷ ︸
variance
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Bagging and Bias

I Bias: not made any worse by bagging multiple hypotheses

Ey

[(
ED

[ 1
N

N∑
n=1

f̃D(x)
]
− E[y | x]

)2]
︸ ︷︷ ︸

bias of the ensemble

= Ey

[( 1

N

N∑
n=1

ED [̃fD(x)]− E[y | x]
)2]

=

= Ey

[(
ED

[̃
fD(x)

]
− E[y | x]

)2]︸ ︷︷ ︸
bias of the individual model
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Bagging and Variance

I Variance: Let F = 1
N

∑N
n=1 f̃n(x)

Var(F) =
1

N2

∑
i,j

Cov(̃fi, f̃j) =
1

N2

∑
i

Var(̃fi) +∑
j6=i

Cov(̃fi, f̃j)



I All the models f̃i use the same algorithm, so

Var(F) =
1

N
Var(̃f) +

1

N2

∑
i

∑
j 6=i

Cov(̃fi, f̃j)

I Conclusion: Variance is N times lower for uncorrelated hypotheses, and is unchanged

for fully-correlated.
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›

Stacked generalisation
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Motivation

What if I train an algorithm B
that corrects the mistakes of
algorithm A?

Picture: https://blogs.sas.com

Kazeev et al. Ensembles 12 / 17

https://blogs.sas.com


Blending

I Partition the training dataset D into D1 and D2

I Train models f̃i(x) on D1

I Compute predictions of Zi = f̃i(D2)

I Train the meta-model φ(Z1, . . . ,ZN,D2) on the predictions obtained on the previous

step and features

I Do you see a glaring issue with this approach?

I Both levels are trained on half of the dataset – unacceptable waste in the quest for 1%

performance gain!
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Stacking

1. Partition train into k folds

2. Just like in cross-validation, k times train

each level-1 model leaving one fold out;

predict on the left-out fold

3. Fit the meta-model on all the level-1

predictions, optionally concatenated

with features

4. For prediction, first evaluate the level-1

models, then the meta-model

Picture: https://rasbt.github.io/mlxtend/user_

guide/regressor/StackingCVRegressor/
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Summary

I Bootstrapping: a general statistical technique for computing sample functionals (and

their variance)

I Bagging: meta-learner over arbitrary algorithms via bootstrap aggregation

I The Random Forest algorithm: Bagging over decision trees

I Stacking: train a learner on the outputs of other learners

I Blending: a simplified version of stacking
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Thank you!

nikita.kazeev@cern.ch

anaderiRu

hse_lambda
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