# Dark Matter search with emulsion detectors





**New Technologies for New Physics** 

### Video of the lecturer

Detectors in Particle Physics – Track III, Lecture III



# Dark matter search at the accelerators







**New Technologies for New Physics** 

LDN



Video of the lecturer

## Ultra-relativistic dark matter







## Nuclear recoils induced by galactic dark matter scattering in the emulsion





**New Technologies for New Physics** Detectors in Particle Physics – Track III, Lecture III

Video of the lecturer



Due to solar system movement in galaxy, WIMP flux is expected to be not isotropic on the Earth direction measurement!









**New Technologies for New Physics** Detectors in Particle Physics – Track III, Lecture III

Video of the lecturer





# Nanometric nuclear recoils in the emulsion





**New Technologies for New Physics** 

Video of the lecturer







$$E_{l} = \frac{3\varepsilon_{d}(\lambda)}{\varepsilon_{m}(\lambda) + 2\varepsilon_{d}(\lambda)} E_{0}$$
  

$$E_{l} \text{ intensity inside the metal}$$
  

$$\varepsilon_{m}(\lambda_{l}) + 2\varepsilon_{d}(\lambda_{l}) \approx 0$$
  

$$F_{l} \text{ is resonance enhanced}$$

Video of the lecturer





# Resonant light scattering: silver grains

### **TEM image of Carbon track after development**



## Different orientation



**New Technologies for New Physics** 





# Resonant light scattering: silver grains

### **TEM image of Carbon track after development**



## Different orientation



**New Technologies for New Physics** 



**Optical response strongly depends** on the polarization of incident light





# Two grains building up a track







# Single grain: accuracy



Detectors in Particle Physics – Track III, Lecture III



# Super-resolution microscope





**New Technologies for New Physics** 

### Video of the lecturer



Detectors in Particle Physics – Track III, Lecture III



### Horizontal ions, signal-like events

### Barycenter displacement > $3\sigma$ (Moving)

Moving grains 21714 Entries Microtracks 0.06872 Mean Static grains 1000 0.7064 Std Dev 11088 Entries 800 0.04414 Mean 0.6407 Std Dev Entries 9286 600 0.02258 Mean Std Dev 0.8641 400 200 1.5 -1.5-0.5 0.5 0 \$ [rad]

Super-resolution plasmic imaging microscopy for a sub micron tracking emulsion detector, PTEP (2019) 063H02



100 KeV



### Video of the lecturer

### Barycenter displacement $\leq 3\sigma$ (Static) 60 KeV











### **New Technologies for New Physics**

$$+a\cos 2(\theta - \varphi)$$

$$\varphi = pixel "phase"$$

Detectors in Particle Physics – Track III, Lecture III





**New Technologies for New Physics** 

Detectors in Particle Physics – Track III, Lecture III

# Super resolution imaging



Super-resolution high-speed optical microscopy for fully automated readout of metallic nanoparticles and nanostructure Scientific Reports 10 (2020) 18773



**New Technologies for New Physics** Detectors in Particle Physics – Track III, Lecture III





R = 45 nm → blue H = 80 (120) nm → green (red)

Annu. Rev. Phys. Chem. 58 (2007) 267-297



MISI

# dipole in metallic particle dipole moment $p = 4\pi\varepsilon_m a^3 \frac{\varepsilon_1(\lambda) - \varepsilon_m(\lambda)}{\varepsilon_1(\lambda) + 2\varepsilon_m(\lambda)} E_0$ resonance $\varepsilon_1(\lambda_l) + 2\varepsilon_m(\lambda_l) \approx 0$

Appl. Phys. Lett. 80, 1826 (2002)

Ag grain size  $\rightarrow$  resonance wavelength

Petallic particle
New Technologies for New Physics







### 40 nm diameter





**New Technologies for New Physics** 

### 60 nm diameter

### Video of the lecturer

Detectors in Particle Physics – Track III, Lecture III



### 40 nm diameter, 80 nm height

NR-40x80 **/.5 μm x /.5 μm** 



**New Technologies for New Physics** 

### 40 nm diameter, 120 nm height



### Video of the lecturer







![](_page_18_Picture_2.jpeg)

**New Technologies for New Physics** 

![](_page_18_Picture_5.jpeg)

Detectors in Particle Physics – Track III, Lecture III

![](_page_18_Picture_8.jpeg)

# **Emulsions in applied Science**

![](_page_19_Picture_1.jpeg)

New Technologies for New Physics Detectors in Particle Physics – Track III, Lecture III

Video of the lecturer

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

# **Emulsions for medical applications**

![](_page_20_Figure_1.jpeg)

Scarce knowledge of the interaction along their path

![](_page_20_Picture_3.jpeg)

**New Technologies for New Physics** 

### Video of the lecturer

Protons and ions used in hadron-therapy

![](_page_20_Figure_7.jpeg)

Detectors in Particle Physics – Track III, Lecture III

![](_page_20_Picture_10.jpeg)

## Identification of fragments through the measurement of their ionization

## G. De Lellis et al., JINST 12 (2007) P08013

![](_page_21_Figure_2.jpeg)

![](_page_21_Picture_3.jpeg)

**New Technologies for New Physics** 

### Video of the lecturer

![](_page_21_Figure_6.jpeg)

Detectors in Particle Physics – Track III, Lecture III

![](_page_21_Picture_9.jpeg)

Study of Carbon ion interactions G. De Lellis et al., Nucl. Phys. A853 (2011) 124

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

 $\sigma_{tot} = (18420 \pm 380_{stat} \pm 1840_{svs})$  mbarn

![](_page_22_Picture_5.jpeg)

**New Technologies for New Physics** Detectors in Particle Physics – Track III, Lecture III

![](_page_22_Figure_7.jpeg)

### Video of the lecturer

 $\sigma(\Delta z = 1) = (2510 \pm 140_{stat} \pm 250_{sys})$  mbarn

![](_page_22_Picture_10.jpeg)

# Momentum and angular distribution of fragments

G. De Lellis et al., Meas. Sci. Technol. 26 (2015) 094001 G. De Lellis et al., JINST 12 (2017) P08013 M. C. Montesi et al., Open Physics 17 (2019) 233

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

**New Technologies for New Physics** 

![](_page_23_Figure_5.jpeg)

### Video of the lecturer

Detectors in Particle Physics – Track III, Lecture III

![](_page_23_Picture_9.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_24_Picture_3.jpeg)

**New Technologies for New Physics** 

# Summary of measurement performance

| Observable           | Method                       | Range                                  | Notes             |
|----------------------|------------------------------|----------------------------------------|-------------------|
| <b>τ</b> (lifetime)  | Flight length, < <b>ð</b> >  | 10 <sup>-16</sup> ÷10 <sup>-11</sup> s |                   |
| Momentum             | MCS                          | 0.5 ÷ 10 GeV                           | pion              |
| Momentum             | range                        | <500 MeV                               |                   |
| Energy               | Shower counting, calorimetry | 1÷ 20 GeV                              | electron          |
| Z (charge)           | Ionization                   | 1÷6                                    | nuclei            |
| A (mass number)      | Range, MCS                   | 1÷12                                   | nuclei            |
| Kinetic energy       | Nanometric range             | ≥30 keV                                | Carbon            |
| $e/\pi^0$ separation | $\gamma$ conversion          | No threshold                           |                   |
| $\mu/\pi$ separation | Range, topology              | No threshold                           | Dense<br>material |

![](_page_25_Picture_2.jpeg)

New Technologies for New Physics Detectors in Particle Physics – Track III, Lecture III

### Video of the lecturer

![](_page_25_Picture_5.jpeg)

![](_page_25_Picture_6.jpeg)

# A few textbook references

- method, Pergamon Press (1959).
- W.H. Barkas, Nuclear research emulsion, Academic Press, New York, 1973.
- and Organic Devices, Oxford University Press (2011), ISBN: 9780199572953.
- Particles and Radiation, Fabjan and Schopper Editors (2020) Springer

![](_page_26_Picture_5.jpeg)

**New Technologies for New Physics** 

Video of the lecturer

P.H. Fowler, D.H. Perkins and C.F. Powell, The study of elementary particles by the photographic

Tadaaki Tani, Photographic Science, Advances in Nanoparticles, J-Aggregates, Dye Sensitization,

G. De Lellis et al., Nuclear Emulsions in Particle Physics Reference Library, volume 2 Detectors for

![](_page_26_Picture_13.jpeg)

![](_page_27_Picture_0.jpeg)

Image taken using OPERA emulsion film with pinhole handmade camera (Di Ferdinando)

![](_page_27_Picture_2.jpeg)

New Technologies for New Physics Detectors in Particle Physics – Track III, Lecture III

### Video of the lecturer

![](_page_27_Picture_5.jpeg)

# **QUIZ - 3**

- micron or so and how to achieve the nanometric accuracy
- List the main advantage of an emulsion-based detector for medical applications

![](_page_28_Picture_4.jpeg)

**New Technologies for New Physics** Detectors in Particle Physics – Track III, Lecture III

• Explain what is normally limiting the resolution for nuclear emulsion to half a

List one technique used to investigate the internal structure of a volcano

![](_page_28_Picture_9.jpeg)

![](_page_28_Picture_10.jpeg)

# A few problems as homework

- types. Hint: assume that 1 AgBr Crystal is equal to 1 bit of information
- a Poisson distribution.

![](_page_29_Picture_3.jpeg)

**New Technologies for New Physics** 

Video of the lecturer

Calculate the data capacity of a double-sided emulsion film with 50 µm thick sensitive layers and 12.5 x 10 cm<sup>2</sup> surface for OPERA, NIT and U-NIT emulsion

Calculate the probability to reconstruct a background track in a 100µm thick emulsion layer, assuming that the transverse accuracy is 1µm, the random fog (spurious grain) level is 7 grains/1000  $\mu$ m<sup>3</sup> and a track is made of at least 5 grains. Hint: assume that the track is straight and that the number of grains is described by

![](_page_29_Picture_9.jpeg)

![](_page_29_Picture_11.jpeg)

![](_page_29_Picture_12.jpeg)