The OPERA experiment

The OPERA experiment (Oscillation Project with Emulsion tRacking) Apparatus) designed to directly observe, for the first time in <u>APPEARANCE</u> <u>MODE</u>, the $v_{\mu} \rightarrow v_{\tau}$ oscillation in a pure v_{μ} beam

- High density and 1.2 kton target mass for statistics
- Underground location: Gran Sasso Laboratory (10⁶ reduction of cosmic ray flux)

Target Area Muon Spectrometer Brick walls+Target Tracker

New Technologies for New Physics Detectors in Particle Physics – Track III, Lecture III

Video of the lecturer

Brick Manipulating System

The OPERA experiment

The largest ever emulsion detector (110000 m² of emulsion films)

- Small neutrino cross-section and beam divergence emulsions)
- Detect τ-lepton production and decay: micrometric space resolution
- Electronic detectors to provide the "time stamp", preselect the interaction brick and reconstruct μ charge/ momentum

New Technologies for New Physics Detectors in Particle Physics – Track III, Lecture III

• Small neutrino cross-section and beam divergence: massive active target (~ 1.2 kton target with 30 ton

ric space resolution preselect the interaction brick and reconstruct

Interface emulsion films

High signal/noise ratio for event trigger and scanning time reduction

New Technologies for New Physics

Video of the lecturer

Interface emulsion films

Video of the lecturer

One of the electron neutrino events reconstructed

Track follow-up and vertex finding

Track follow-up film by film:

- Brick exposure at the surface laboratory to cosmic-rays for alignment
- Definition of the stopping point

~2 cm³ around the stopping point

New Technologies for New Physics

Video of the lecturer

Location of neutrino interactions Emulsions give 3D vector data, with micrometric precision

The frames correspond to the scanning area. Yellow short lines \rightarrow measured tracks. Other colored \rightarrow interpolation or extrapolation.

New Technologies for New Physics

Video of the lecturer

Location of neutrino interactions

New Technologies for New Physics

Video of the lecturer

Location of neutrino interactions

New Technologies for New Physics

Video of the lecturer

Event location efficiency versus energy

Momentum measurement by the multiple Coulomb Scattering

Video of the lecturer

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta c p} \ z \ \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

High sampling calorimeter with >5 active layers per X₀

New Technologies for New Physics

Energy measurement with a calorimetric approach

Video of the lecturer

Detectors in Particle Physics – Track III, Lecture III

New Technologies for New Physics

Video of the lecturer

Detectors in Particle Physics – Track III, Lecture III

New Technologies for New Physics Detectors in Particle Physics – Track III, Lecture III

Video of the lecturer

New Technologies for New Physics

Detectors in Particle Physics – Track III, Lecture III

Particle identification by following the track along its path

Assess the muon/hadron nature of the particle

New Technologies for New Physics Detectors in Particle Physics – Track III, Lecture III

Video of the lecturer

Kinematical variables measured in emulsion

New Technologies for New Physics Detectors in Particle Physics – **Track III, Lecture III**

	Measured value
	41 ± 2
th (μm)	1335 ± 35
(GeV/c)	12 +6 ₋₃
	470 +230 ₋₁₂₀
(MeV/c)	570 +320 ₋₁₇₀
	173 ± 2

Video of the lecturer

OPERA final results

PRL 115, 121802 (2015)

PHYSICAL REVIEW LETTERS

Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment

PHYSICAL REVIEW LETTERS 120, 211801 (2018)

Editors' Suggestion

Featured in Physics

Final Results of the OPERA Experiment on ν_{τ} Appearance in the CNGS Neutrino Beam 10 events observed, discovery with 6.1 sigma significance First measurement of Δm^2 in appearance mode First cross-section measurement First direct observation of the leptonic number of ν_{τ}

New Technologies for New Physics Detectors in Particle Physics – Track III, Lecture III

Video of the lecturer

week ending 18 SEPTEMBER 2015

Ş

Neutrino detector in SHiP based on nuclear emulsions

~7300 m² of films placed in magnetic field to be fully analysed

В

film3

New Technologies for New Physics

Video of the lecturer

1 GeV. New data 10 GeV

Figure 7: Measured sagitta along the x axis for 1 and 10 GeV/c pions. NIM A592 (2008) 56-62

Compact Emulsion Spectrometer

Detectors in Particle Physics – Track III, Lecture III

QUIZ - 2

with an emulsion-based neutrino target can accomplish this task

the micrometric resolution?

New Technologies for New Physics Detectors in Particle Physics – Track III, Lecture III

• Explain how to distinguish the 3 neutrino types and why a hybrid detector

The OPERA experiment was using a hybrid technology, combining emulsion with electronic detectors. Electronic trackers provided particle trajectories with centimetre accuracy. What is the method used to connect those tracks to the corresponding ones reconstructed in the emulsion to finally achieve

