Exercise O.Steinkamp

November 18, 2020

Problem 1

Calculate the center-of-mass energy for fixed-target proton-proton collisions at the LHC, colliding one of the two LHC beams on a target at rest (this is actually done in LHCb, see e.g. https://cerncourier.com/a/new-smog-on-the-horizon/).

Problem 2

Estimate the expected mass resolution for the $\Upsilon(1S)$ in LHCb. As shown in the slides, the mass of a particle decaying into a μ^+ and a μ^- can be calculated from the measured momenta of the two muons as

$$\begin{split} m_{\mu^+\mu^-} &= \sqrt{(E_{\mu^+} + E_{\mu^-})^2 - (\vec{p}_{\mu^+} + \vec{p}_{\mu^-})^2} \\ E_{\mu^\pm} &= \sqrt{|\vec{p}_{\mu^\pm}|^2 + m_{\mu}^2} \end{split}$$

Use the approximation $|\vec{p}_{\mu^{\pm}}| >> m_{\mu}$ to express $m_{\mu^{+}\mu^{-}}$ as a function of $|\vec{p}_{\mu^{+}}|, |\vec{p}_{\mu^{-}}|$ and $\cos \theta_{\mu^{+}\mu^{-}}$, where $\theta_{\mu^{+}\mu^{-}}$ is the opening angle between $\vec{p}_{\mu^{+}}$ and $\vec{p}_{\mu^{-}}$.

Assume $m_{\mu^+\mu^-} = 10$ GeV (i.e. approximately the mass of the $\Upsilon(1S)$ resonance) and $|\vec{p}_{\mu^+}| = |\vec{p}_{\mu^-}| = 50$ GeV. Calculate $\cos \theta_{\mu^+\mu^-}$. In the plot shown on slide 35 of the lecture you can see that the relative momentum resolution for a 50 GeV particle in LHCb is about 0.7%. Assume further that $\theta_{\mu^+\mu^-}$ can be measured with relative precision 3×10^{-4} . Estimate the expected uncertainty on $m_{\mu^+\mu^-}$ using Gaussian error propagation. Which of the two uncertainties (that on $|\vec{p}_{\mu^\pm}|$ or that on $\theta_{\mu^+\mu^-}$) dominates the mass resolution? Compare your result with the measured mass resolution for the $\Upsilon(1S)$ of about 47 MeV (see e.g. https://lhcb-public.web.cern.ch/Images_2012/Images_2010/UpsilonLHCb2.png).