

Particles and their interactions
Lesya Shchutska
EPFL

The goals for the lecture

- we will work towards computation of the decay and scattering processes rates:
- $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
- $e^{-} q \rightarrow e^{-} q$

- we covered the relativistic calculation of particle decay rates and cross sections:

$$
\begin{equation*}
\sigma \propto \frac{|M|^{2}}{\text { flux }} \times(\text { phase space }) \tag{1}
\end{equation*}
$$

- also went through the relativistic treatment of spin-half particles: Dirac equation
- here we will concentrate on the Lorentz invariant Matrix Element:
- interaction by particle exchange
- introduction to Feynman diagrams
- the Feynman rules for QED

Interaction by particle exchange

- calculate transition rates from Fermi's Golden rule:

$$
\begin{equation*}
\Gamma_{f i}=2 \pi\left|T_{f i}\right|^{2} \rho\left(E_{f}\right) \tag{2}
\end{equation*}
$$

where $T_{f i}$ is perturbation expansion for the Transition matrix element:

$$
\begin{equation*}
T_{f i}=\langle f| V|i\rangle+\sum_{j \neq i} \frac{\langle f| V|j\rangle\langle j| V|i\rangle}{E_{i}-E_{j}}+\ldots \tag{3}
\end{equation*}
$$

- for particle scattering, the first two terms in the perturbation series can be viewed as:
"scattering in a potential"

Interaction by particle exchange

- "Classical picture": particles act as sources for fields which give rise to a potential in which other particles scatter - "action at a distance"
- "Quantum field theory picture": forces arise due to the exchange of virtual particles. Action at a distance does not exits, and forces between particles are due to particles

Interaction by particle exchange

- consider the particle interaction $a+b \rightarrow c+d$ which occurs via an intermediate state
- one possible space-time picture of this process is:

- initial state $i: a+b$
- final state $f: c+d$
- intermediate state $j: c+b+x$
- this time-ordered diagram corresponds to a "emitting" x and then b absorbing x

Interaction by particle exchange

- the corresponding term in the perturbation expansion is:

$$
\begin{gather*}
T_{f i}=\frac{\langle f| V|j\rangle\langle j| V|i\rangle}{E_{i}-E_{j}} \tag{4}\\
T_{f i}^{a b}=\frac{\langle d| V|x+b\rangle\langle c+x| V|a\rangle}{\left(E_{a}+E_{b}\right)-\left(E_{c}+E_{x}+E_{b}\right)} \tag{5}
\end{gather*}
$$

- $T_{f i}^{a b}$ refers to the time-ordering where a emits x before b absorbs it

Interaction by particle exchange

- need an expression for $\langle c+x| V|a\rangle$ in non-invariant matrix element $T_{f i}$
- ultimately aiming to obtain Lorentz invariant ME
- recall $T_{f i}$ is related to the invariant matrix element by

$$
\begin{equation*}
T_{f i}=\prod_{k}\left(2 E_{k}\right)^{-1 / 2} M_{f i} \tag{6}
\end{equation*}
$$

where k runs over all particles in the matrix element

- here we have:

$$
\begin{equation*}
\langle c+x| V|a\rangle=\frac{M_{(a \rightarrow c+x)}}{\left(2 E_{a} 2 E_{c} 2 E_{x}\right)^{1 / 2}} \tag{7}
\end{equation*}
$$

$M_{(a \rightarrow c+x)}$ is the "Lorentz invariant" matrix element for $a \rightarrow c+x$

Interaction by particle exchange

- the simplest Lorentz invariant quantity is a scalar, in this case:

$$
\begin{equation*}
\langle c+x| V|a\rangle=\frac{g_{a}}{\left(2 E_{a} 2 E_{c} 2 E_{x}\right)^{1 / 2}} \tag{8}
\end{equation*}
$$

g_{a} is a measure of the strength of the interaction $a \rightarrow c+x$

- the matrix element is only LI in the sense that it is defined in terms of LI wave-function normalizations and that the form of the couplings is LI
- in this "illustrative" example g is not dimensionless
- similarly

$$
\begin{equation*}
\langle d| V|x+b\rangle=\frac{g_{b}}{\left(2 E_{b} 2 E_{d} 2 E_{x}\right)^{1 / 2}} \tag{9}
\end{equation*}
$$

- giving

Interaction by particle exchange

- the "Lorentz invariant" matrix element for the entire process is

$$
\begin{equation*}
M_{f i}^{a b}=\left(2 E_{a} 2 E_{b} 2 E_{c} 2 E_{d}\right)^{1 / 2} T_{f i}^{a b}=\frac{1}{2 E_{x}} \cdot \frac{g_{a} g_{b}}{\left(E_{a}-E_{c}-E_{x}\right)} \tag{11}
\end{equation*}
$$

Here:

- $M_{f i}^{a b}$ refers to the time-ordering where a emits x before b absorbs it \Longrightarrow it is not Lorentz invariant, since order of event in time depends on frame
- momentum is conserved at each interaction vertex but not energy: $E_{j} \neq E_{i}$
- particle x is "on-mass shell" (or "on-shell"), i.e. $E_{x}^{2}=\vec{p}_{x}^{2}+m^{2}$

Interaction by particle exchange

- need to consider also the other time ordering for the process

- the Lorentz-invariant matrix element for this time ordering is:

$$
\begin{equation*}
M_{f i}^{b a}=\frac{1}{2 E_{x}} \cdot \frac{g_{a} g_{b}}{\left(E_{b}-E_{d}-E_{x}\right)} \tag{12}
\end{equation*}
$$

Interaction by particle exchange

- in QM need to sum over ME corresponding to same final state:

$$
\begin{align*}
M_{f i} & =M_{f i}^{a b}+M_{f i}^{b a}=\frac{g_{a} g_{b}}{2 E_{x}} \cdot\left(\frac{1}{E_{a}-E_{c}-E_{x}}+\frac{1}{E_{b}-E_{d}-E_{x}}\right) \tag{13}\\
& =\frac{g_{a} g_{b}}{2 E_{x}} \cdot\left(\frac{1}{E_{a}-E_{c}-E_{x}}-\frac{1}{E_{a}-E_{c}+E_{x}}\right), \text { since } E_{a}+E_{b}=E_{c}+E_{d} \tag{14}
\end{align*}
$$

- this leads to:

$$
\begin{equation*}
M_{f i}=\frac{g_{a} g_{b}}{2 E_{x}} \cdot \frac{2 E_{x}}{\left(E_{a}-E_{c}\right)^{2}-E_{x}^{2}}=\frac{g_{a} g_{b}}{\left(E_{a}-E_{c}\right)^{2}-E_{x}^{2}} \tag{15}
\end{equation*}
$$

Interaction by particle exchange

- from the first time ordering:

$$
\begin{equation*}
E_{x}^{2}=\vec{p}_{x}^{2}+m_{x}^{2}=\left(\vec{p}_{a}-\vec{p}_{c}\right)^{2}+m_{x}^{2} \tag{16}
\end{equation*}
$$

giving

$$
\begin{gather*}
M_{f i}=\frac{g_{a} g_{b}}{\left(E_{a}-E_{c}\right)^{2}-\left(\vec{p}_{a}-\vec{p}_{c}\right)^{2}-m_{x}^{2}}=\frac{g_{a} g_{b}}{\left(p_{a}-p_{c}\right)^{2}-m_{x}^{2}} \tag{17}\\
\Rightarrow M_{f i}=\frac{g_{a} g_{b}}{q^{2}-m^{2}}, q=p_{a}-p_{c} \tag{18}
\end{gather*}
$$

- after summing over all possible time orderings, $M_{f i}$ is Lorentz invariant, i.e. the sum over all time orderings gives a frame independent matrix element
- exactly the same result would have been obtained by considering the annihilation process

Feynman diagrams

- the sum over all possible time-orderings is represented by a Feynman diagram

In a Feynman diagram:

- the LHS represents the initial state
- the RHS is the final state
- everything in between is "how the interaction happened"

Feynman diagrams

- it is important to remember that energy and momentum are conserved at each interaction vertex in the diagram
- the factor $1 /\left(q^{2}-m_{x}^{2}\right)$ is the propagator; it arises naturally from the above discussion of interaction by particle exchange
The matrix element $M_{f i}=\frac{g_{a} g_{b}}{q^{2}-m^{2}}$ depends on:
- the fundamental strength of the interaction at the two vertices g_{a}, g_{b}
- the four-momentum, q, carried by the (virtual) particle which is determined from energy/momentum conservation at the vertices.
- note, q^{2} can be either positive or negative

Feynman diagrams

"t-channel"

- here $q=p_{1}-p_{3}=p_{4}-p_{2}=t$
- for elastic scattering: $p_{1}=\left(E, \vec{p}_{1}\right) ; p_{3}=\left(E, \vec{p}_{3}\right)$, $q^{2}=(E-E)^{2}-\left(\vec{p}_{1}-\vec{p}_{3}\right)^{2}<0$
- $q^{2}<0$: is called "space-like"

"s-channel"
- here $q=p_{1}+p_{2}=p_{3}+p_{4}=s$
- for in CoM: $p_{1}=(E, \vec{p}) ; p_{2}=(E,-\vec{p})$,

$$
q^{2}=(E+E)^{2}-(\vec{p}-\vec{p})^{2}=4 E^{2}>0
$$

- $q^{2}>0$: is called "time-like"

Virtual particles

"Time-ordered QM"

$=$

- momentum conserved at vertices
- energy not conserved at vertices
- exchanged particle "on mass shell"

$$
E_{x}^{2}-\left|\vec{p}_{x}\right|^{2}=m_{x}^{2}
$$

"Feynman diagram"

- momentum and energy conserved at interaction vertices
- exchanged particle "off mass shell": virtual particle

$$
E_{x}^{2}-\left|\vec{p}_{x}\right|^{2}=q^{2} \neq m_{x}^{2}
$$

Virtual particles

Can think of observable "on mass shell" particles as propagating waves and unobservable virtual particles as normal modes between the sources particles:

$V(r)$ from particle exchange

- can view the scattering of an electron by a proton at rest in two ways:
- interaction by particle exchange in $2^{\text {nd }}$ order perturbation theory:

$$
M_{f i}=\frac{g_{a} g_{b}}{q^{2}-m_{x}^{2}}
$$

- could also evaluate the same process in first order perturbation theory treating proton as a fixed source of a field which gives a rise to a potential $V(r)$

$$
M=\left\langle\Psi_{f}\right| V\left|\Psi_{i}\right\rangle
$$

we will obtain the same expression for $M_{f i}$ using $V(r)=g_{a} g_{b} \frac{e^{-m r}}{r}$ - Yukawa potential

- in this way can relate potential and forces to the particle exchange picture

Quantum electrodynamics - QED

- now consider the interaction of an electron and τ lepton by the exchange of a photon
- the general ideas still hold but also need to account for the spin of the electron $/ \tau$ lepton and also the spin(polarization) of the virtual photon
- the basic interaction between a photon and a charged particle can be introduced by making the minimal substitution:

$$
\begin{equation*}
\vec{p} \rightarrow \vec{p}-q \vec{A} ; \quad E \rightarrow E-q \phi \quad(q \text { is a charge }) \tag{19}
\end{equation*}
$$

in QM:

$$
\begin{equation*}
\vec{p}=-i \vec{\nabla} ; \quad E=i \frac{\partial}{\partial t} \tag{20}
\end{equation*}
$$

Therefore make substitution: $i \partial_{\mu} \rightarrow i \partial_{\mu}-q A_{\mu}$, where $A_{\mu}=(\phi,-\vec{A}) ; \quad \partial_{\mu}=\left(\frac{\partial}{\partial t},+\vec{\nabla}\right)$

Quantum electrodynamics - QED

- the Dirac equation:

$$
\begin{gather*}
\gamma^{\mu} \partial_{\mu} \Psi+i m \Psi=0 \Rightarrow \gamma^{\mu} \partial_{\mu} \Psi+i q \gamma^{\mu} A_{\mu} \Psi+i m \Psi=0 \tag{21}\\
(\times i) \Longrightarrow i \gamma^{0} \frac{\partial \Psi}{\partial t}+i \vec{\gamma} \vec{\nabla} \Psi-q \gamma^{\mu} A_{\mu} \Psi-m \Psi=0 \tag{22}\\
i \gamma^{0} \frac{\partial \Psi}{\partial t}=\gamma^{0} \widehat{H} \psi=m \Psi-i \vec{\gamma} \vec{\nabla} \Psi+q \gamma^{\mu} A_{\mu} \Psi \tag{23}\\
\times \gamma^{0}: \widehat{H} \Psi=\underbrace{\left(\gamma^{0} m-i \gamma^{0} \vec{\gamma} \vec{\nabla}\right) \Psi}_{\text {combined rest mass }+ \text { K.E. }}+\underbrace{q \gamma^{0} \gamma^{\mu} A_{\mu} \Psi}_{\text {potential energy }} \tag{24}
\end{gather*}
$$

- we can identify the potential energy of a charged spin-half particle in an electromagnetic field as:

$$
\begin{equation*}
\widehat{V}_{D}=q \gamma^{0} \gamma^{\mu} A_{\mu} \tag{25}
\end{equation*}
$$

Quantum electrodynamics - QED

- the final complication is that we have to account for the photon polarization states:

$$
\begin{equation*}
A_{\mu}=\epsilon_{\mu}^{(\lambda)} e^{i(\vec{p} \cdot \vec{r}-E t)} \tag{26}
\end{equation*}
$$

e.g. for a real photon propagating in the z direction we have two orthogonal transverse polarization states:

$$
\epsilon^{(1)}=\left(\begin{array}{l}
0 \tag{27}\\
1 \\
0 \\
0
\end{array}\right) \quad \epsilon^{(2)}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

it's possible to also choose circularly polarized states

Quantum electrodynamics - QED

- previously with the example of a simple spin-less interaction we had:

$$
\begin{equation*}
M=\underbrace{\left\langle\Psi_{c}\right| V\left|\Psi_{a}\right\rangle}_{=g_{a}} \frac{1}{q^{2}-m_{x}^{2}} \underbrace{\left\langle\Psi_{d}\right| V\left|\Psi_{b}\right\rangle}_{=g_{b}} \tag{28}
\end{equation*}
$$

- in QED we could again go through the procedure of summing the time-orderings using Dirac spinors and the expressions for \widehat{V}_{D}. At the end, after summing over all the photon polarizations, we obtain:

$$
\begin{equation*}
M=\underbrace{\left[u_{e}^{\dagger}\left(p_{3}\right) q_{e} \gamma^{0} \gamma^{\mu} u_{e}\left(p_{1}\right)\right]}_{\text {interaction of } e^{-} \text {with photon }} \tag{29}
\end{equation*}
$$

$$
\underbrace{\left[u_{\tau}^{\dagger}\left(p_{4}\right) q_{\tau} \gamma^{0} \gamma^{\nu} u_{\tau}\left(p_{2}\right)\right]}_{\text {interaction of } \tau^{-} \text {with photon }}
$$

massless γ, sum over polarizations

Quantum electrodynamics - QED

- the sum over the polarizations of the virtual photon has to include longitudinal and scalar contributions, i.e. 4 polarization states:

$$
\epsilon^{(1)}=\left(\begin{array}{l}
1 \tag{30}\\
0 \\
0 \\
0
\end{array}\right) \quad \epsilon^{(1)}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad \epsilon^{(2)}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad \epsilon^{(3)}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

and it is equal to:

$$
\begin{equation*}
\sum_{\lambda} \epsilon_{\mu}^{\lambda}\left(\epsilon_{\nu}^{\lambda}\right)^{*}=-g_{\mu \nu} \tag{31}
\end{equation*}
$$

(at this point we take this statement as is)

- the invariant matrix element becomes:

$$
\begin{equation*}
M=\left[u_{e}^{\dagger}\left(p_{3}\right) q_{e} \gamma^{0} \gamma^{\mu} u_{e}\left(p_{1}\right)\right] \frac{-g_{\mu \nu}}{q^{2}}\left[u_{\tau}^{\dagger}\left(p_{4}\right) q_{\tau} \gamma^{0} \gamma^{\mu} u_{\tau}\left(p_{2}\right)\right] \tag{32}
\end{equation*}
$$

Quantum electrodynamics - QED

- using the definition of the adjoint spinor $\bar{\Psi}=\Psi^{\dagger} \gamma^{0}$:

$$
\begin{equation*}
\mathrm{M}=\left[\bar{u}_{e}\left(p_{3}\right) q_{e} \gamma^{\mu} u_{e}\left(p_{1}\right)\right] \frac{-g_{\mu \nu}}{q^{2}}\left[\bar{u}_{\tau}\left(p_{4}\right) q_{\tau} \gamma^{\mu} u_{\tau}\left(p_{2}\right)\right] \tag{33}
\end{equation*}
$$

- this is a remarkably simple expression!
- $\bar{u}_{1} \gamma^{\mu} u_{2}$ transforms as a four vector
- writing

$$
\begin{equation*}
j_{e}^{\mu}=\bar{u}_{e}\left(p_{3}\right) \gamma^{\mu} u_{e}\left(p_{1}\right), \quad j_{\tau}^{\nu}=\bar{u}_{\tau}\left(p_{4}\right) \gamma^{\nu} u_{\tau}\left(p_{2}\right) \tag{34}
\end{equation*}
$$

we get that M is Lorentz invariant:

$$
\begin{equation*}
M=-q_{e} q_{\tau} \frac{j_{e} \cdot j_{\tau}}{q^{2}} \tag{35}
\end{equation*}
$$

Feynman rules for QED

- it should be remembered that the expression

$$
\begin{equation*}
M=\left[\bar{u}_{e}\left(p_{3}\right) q_{e} \gamma^{\mu} u_{e}\left(p_{1}\right)\right] \frac{-g_{\mu \nu}}{q^{2}}\left[\bar{u}_{\tau}\left(p_{4}\right) q_{\tau} \gamma^{\nu} u_{\tau}\left(p_{2}\right)\right] \tag{36}
\end{equation*}
$$

hides a lot of complexity:

- we have summed over all possible time-orderings and summed over all polarization states of the virtual photon
- if we are presented with a new Feynman diagram we do not want to go through the full calculation again
- fortunately, this is not necessary: can just write down matrix element using a set of simple rules

Quantum electrodynamics - QED

Basic Feynman rules

- propagator factor for each internal line: i.e. each internal virtual particle
- Dirac spinor for each external line, i.e. each real incoming or outgoing particle
- vertex factor for each vertex

Basic rules for QED

- external lines:

- internal lines (pronaoatnrc).

spin 1	photon	$-\frac{i g_{\mu v}}{q^{2}}$
spin $1 / 2$	fermion	$\frac{i\left(\gamma^{\mu} q_{\mu}+m\right)}{q^{2}-m^{2}}$

- vertex factors:
spin $1 / 2 \quad$ fermion (charge $-|e|) \quad i e \gamma^{\mu}$

(D) matrix element $-i M=$ product of all factors

Examples

1

which is the same expression as we obtained previously

Examples

2

- at each vertex the adjoint spinor is written first
- each vertex has a different index
- the $g_{\mu \nu}$ of the propagator connects the indices at the vertices

Summary

- interaction by particle exchange naturally gives rise to Lorentz Invariant Matrix Element of the form

$$
\begin{equation*}
M_{f i}=\frac{g_{a} g_{b}}{q^{2}-m_{x}^{2}} \tag{37}
\end{equation*}
$$

- derived the basic interaction in QED taking into account the spins of the fermions and polarization of the virtual photons:

$$
\begin{equation*}
-i M=\left[\bar{u}\left(p_{3}\right) i e \gamma^{\mu} u\left(p_{1}\right)\right] \frac{-i g_{\mu \nu}}{q^{2}}\left[\bar{u}\left(p_{4}\right) i e \gamma^{\nu} u\left(p_{2}\right)\right] \tag{38}
\end{equation*}
$$

- we now have all the elements to perform proper calculations in QED!

