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The goals for the lecture

• we will work towards computation of the decay and scattering processes rates:

• e+e− → µ+µ−

• e−q → e−q
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• we covered the relativistic calculation of particle decay rates and cross sections:

σ ∝ |M|2

flux × (phase space) (1)
• also went through the relativistic treatment of spin-half particles: Dirac equation
• here we will concentrate on the Lorentz invariant Matrix Element:

• interaction by particle exchange
• introduction to Feynman diagrams
• the Feynman rules for QED
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Interaction by particle exchange
• calculate transition rates from Fermi’s Golden rule:

Γfi = 2π|Tfi |2ρ(Ef ) (2)

where Tfi is perturbation expansion for the Transition matrix element:

Tfi = ⟨f |V |i⟩+
∑
j ̸=i

⟨f |V |j⟩ ⟨j |V |i⟩
Ei − Ej

+ . . . (3)

• for particle scattering, the first two terms in the perturbation series can be viewed
as:
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Interaction by particle exchange

• “Classical picture”: particles act as sources for fields which give rise to a
potential in which other particles scatter - “action at a distance”

• “Quantum field theory picture”: forces arise due to the exchange of virtual
particles. Action at a distance does not exits, and forces between particles are due
to particles

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 4



Interaction by particle exchange

• consider the particle interaction a + b → c + d which occurs via an intermediate
state

• one possible space-time picture of this process is:

• initial state i : a + b
• final state f : c + d
• intermediate state j : c + b + x
• this time-ordered diagram corresponds to a

“emitting” x and then b absorbing x
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Interaction by particle exchange

• the corresponding term in the perturbation expansion is:

Tfi =
⟨f |V |j⟩ ⟨j |V |i⟩

Ei − Ej
(4)

T ab
fi =

⟨d |V |x + b⟩ ⟨c + x |V |a⟩
(Ea + Eb)− (Ec + Ex + Eb)

(5)

• T ab
fi refers to the time-ordering where a emits x before b absorbs it
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Interaction by particle exchange

• need an expression for ⟨c + x |V |a⟩ in non-invariant
matrix element Tfi

• ultimately aiming to obtain Lorentz invariant ME
• recall Tfi is related to the invariant matrix element by

Tfi =
∏

k
(2Ek)

−1/2Mfi (6)

where k runs over all particles in the matrix element
• here we have:

⟨c + x |V |a⟩ =
M(a→c+x)

(2Ea2Ec2Ex )
1/2

(7)

M(a→c+x) is the “Lorentz invariant” matrix element for a → c + x
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Interaction by particle exchange
• the simplest Lorentz invariant quantity is a scalar, in this case:

⟨c + x |V |a⟩ = ga

(2Ea2Ec2Ex )
1/2

(8)

ga is a measure of the strength of the interaction a → c + x
• the matrix element is only LI in the sense that it is defined in terms of LI

wave-function normalizations and that the form of the couplings is LI
• in this “illustrative” example g is not dimensionless

• similarly

⟨d |V |x + b⟩ = gb

(2Eb2Ed2Ex )
1/2

(9)

• giving

T ab
fi =

⟨d |V |x + b⟩ ⟨c + x |V |a⟩
(Ea + Eb)− (Ec + Ex + Eb)

=
1

2Ex
· 1

(2Ea2Eb2Ec2Ed)
1/2

· gagb
(Ea − Ec − Ex )

(10)
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Interaction by particle exchange

• the “Lorentz invariant” matrix element for the entire process is

Mab
fi = (2Ea2Eb2Ec2Ed)

1/2T ab
fi =

1

2Ex
· gagb
(Ea − Ec − Ex )

(11)

Here:
• Mab

fi refers to the time-ordering where a emits x before b absorbs it =⇒ it is not
Lorentz invariant, since order of event in time depends on frame

• momentum is conserved at each interaction vertex but not energy: Ej ̸= Ei
• particle x is “on-mass shell” (or “on-shell”), i.e. E 2

x = p⃗2
x + m2
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Interaction by particle exchange

• need to consider also the other time ordering for the process

• this time-ordered diagram corresponds to b “emitting” x̃
and then a absorbing x̃

• x̃ is the anti-particle of x , e.g.:

• the Lorentz-invariant matrix element for this time ordering is:

Mba
fi =

1

2Ex
· gagb
(Eb − Ed − Ex )

(12)
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Interaction by particle exchange

• in QM need to sum over ME corresponding to same final state:

Mfi = Mab
fi + Mba

fi =
gagb
2Ex

·
(

1

Ea − Ec − Ex
+

1

Eb − Ed − Ex

)
(13)

=
gagb
2Ex

·
(

1

Ea − Ec − Ex
− 1

Ea − Ec + Ex

)
, since Ea + Eb = Ec + Ed (14)

• this leads to:

Mfi =
gagb
2Ex

· 2Ex

(Ea − Ec)
2 − E 2

x
=

gagb

(Ea − Ec)
2 − E 2

x
(15)
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Interaction by particle exchange

• from the first time ordering:

E 2
x = p⃗2

x + m2
x = (p⃗a − p⃗c)

2 + m2
x , (16)

giving
Mfi =

gagb

(Ea − Ec)
2 − (p⃗a − p⃗c)

2 − m2
x
=

gagb

(pa − pc)
2 − m2

x
(17)

=⇒ Mfi =
gagb

q2 − m2
, q = pa − pc (18)

• after summing over all possible time orderings, Mfi is Lorentz invariant, i.e. the sum
over all time orderings gives a frame independent matrix element

• exactly the same result would have been obtained by considering the annihilation
process
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Feynman diagrams

• the sum over all possible time-orderings is represented by a Feynman diagram

In a Feynman diagram:
• the LHS represents the initial state
• the RHS is the final state
• everything in between is “how the interaction

happened”
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Feynman diagrams

• it is important to remember that energy and momentum are conserved at each
interaction vertex in the diagram

• the factor 1/
(
q2 − m2

x
)

is the propagator; it arises naturally from the above
discussion of interaction by particle exchange

The matrix element Mfi =
gagb

q2 − m2
depends on:

• the fundamental strength of the interaction at the two vertices ga, gb
• the four-momentum, q, carried by the (virtual) particle which is determined from

energy/momentum conservation at the vertices.
• note, q2 can be either positive or negative
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Feynman diagrams
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“t-channel”
• here q = p1 − p3 = p4 − p2 = t
• for elastic scattering: p1 = (E , p⃗1); p3 = (E , p⃗3),

q2 = (E − E )2 − (p⃗1 − p⃗3)2 < 0

• q2 < 0: is called “space-like”

p1

p4

p2

γ
p3

e
+

e
−

µ
+

µ
−

“s-channel”
• here q = p1 + p2 = p3 + p4 = s
• for in CoM: p1 = (E , p⃗); p2 = (E ,−p⃗),

q2 = (E + E )2 − (p⃗ − p⃗)2 = 4E 2 > 0

• q2 > 0: is called “time-like”
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Virtual particles

“Time-ordered QM”

+
=
• momentum conserved at vertices
• energy not conserved at vertices
• exchanged particle “on mass shell”

E 2
x − |⃗px |2 = m2

x

“Feynman diagram”

Mfi =
gagb

q2 − m2
x

• momentum and energy conserved at
interaction vertices

• exchanged particle “off mass shell”:
virtual particle

E 2
x − |⃗px |2 = q2 ̸= m2

x
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Virtual particles

Can think of observable “on mass shell” particles as propagating waves and unobservable
virtual particles as normal modes between the sources particles:
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V (r) from particle exchange
• can view the scattering of an electron by a proton at rest in two ways:

• interaction by particle exchange in 2nd order perturbation theory:

Mfi =
gagb

q2 − m2
x

• could also evaluate the same process in first order perturbation theory treating
proton as a fixed source of a field which gives a rise to a potential V (r)

M = ⟨Ψf |V |Ψi⟩

we will obtain the same expression for Mfi

using V (r) = gagb
e−mr

r - Yukawa potential

• in this way can relate potential and forces to the particle exchange picture
• however, scattering from a fixed potential V (r) is not a relativistic invariant view
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Quantum electrodynamics ‐ QED

• now consider the interaction of an electron and τ lepton by the exchange of a
photon

• the general ideas still hold but also need to account for the spin of the electron/τ
lepton and also the spin(polarization) of the virtual photon

• the basic interaction between a photon and a charged particle can be introduced by
making the minimal substitution:

p⃗ → p⃗ − qA⃗; E → E − qϕ (q is a charge) (19)

in QM:
p⃗ = −i∇⃗; E = i ∂

∂t (20)

Therefore make substitution: i∂µ → i∂µ − qAµ,
where Aµ =

(
ϕ,−A⃗

)
; ∂µ =

(
∂
∂t ,+∇⃗

)
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Quantum electrodynamics ‐ QED
• the Dirac equation:

γµ∂µΨ+ imΨ = 0 =⇒ γµ∂µΨ+ iqγµAµΨ+ imΨ = 0 (21)

(×i) =⇒ iγ0∂Ψ
∂t + i γ⃗∇⃗Ψ− qγµAµΨ− mΨ = 0 (22)

iγ0∂Ψ
∂t = γ0Ĥψ = mΨ− i γ⃗∇⃗Ψ+ qγµAµΨ (23)

×γ0 : ĤΨ =
(
γ0m − iγ0γ⃗∇⃗

)
Ψ︸ ︷︷ ︸

combined rest mass + K.E.

+ qγ0γµAµΨ︸ ︷︷ ︸
potential energy

(24)

• we can identify the potential energy of a charged spin-half particle in an
electromagnetic field as:

V̂D = qγ0γµAµ (25)

(note the A0 term is just qγ0γ0A0 = qϕ)
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Quantum electrodynamics ‐ QED

• the final complication is that we have to account for the photon polarization states:

Aµ = ϵ(λ)µ e i(p⃗·⃗r−Et) (26)

e.g. for a real photon propagating in the z direction we have two orthogonal
transverse polarization states:

ϵ(1) =


0
1
0
0

 ϵ(2) =


0
0
1
0

 (27)

it’s possible to also choose circularly polarized states
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Quantum electrodynamics ‐ QED
• previously with the example of a simple spin-less interaction

we had:
M = ⟨Ψc |V |Ψa⟩︸ ︷︷ ︸

=ga

1

q2 − m2
x
⟨Ψd |V |Ψb⟩︸ ︷︷ ︸

=gb

(28)

• in QED we could again go through the procedure of summing
the time-orderings using Dirac spinors and the expressions for
V̂D. At the end, after summing over all the photon
polarizations, we obtain: p2

p1

p4

γ

p3

τ
−

e
−

τ
−

e
−

ν

µ

M =
[
u†

e(p3)qeγ
0γµue(p1)

]
︸ ︷︷ ︸
interaction of e− with photon

∑
λ

ϵλµ
(
ϵλν
)∗

q2︸ ︷︷ ︸
massless γ, sum over polarizations

[
u†
τ (p4)qτγ0γνuτ (p2)

]
︸ ︷︷ ︸
interaction of τ− with photon

(29)

All the physics of QED is in the above equation!
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Quantum electrodynamics ‐ QED
• the sum over the polarizations of the virtual photon has to include longitudinal and

scalar contributions, i.e. 4 polarization states:

ϵ(1) =


1
0
0
0

 ϵ(1) =


0
1
0
0

 ϵ(2) =


0
0
1
0

 ϵ(3) =


0
0
0
1

 (30)

and it is equal to: ∑
λ

ϵλµ

(
ϵλν

)∗
= −gµν (31)

(at this point we take this statement as is)
• the invariant matrix element becomes:

M =
[
u†

e(p3)qeγ
0γµue(p1)

] −gµν
q2

[
u†
τ (p4)qτγ0γµuτ (p2)

]
(32)
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Quantum electrodynamics ‐ QED

• using the definition of the adjoint spinor Ψ = Ψ†γ0:

M = [ūe(p3)qeγ
µue(p1)]

−gµν
q2

[ūτ (p4)qτγµuτ (p2)] (33)

• this is a remarkably simple expression!
• ū1γµu2 transforms as a four vector
• writing

jµe = ūe(p3)γµue(p1), jντ = ūτ (p4)γνuτ (p2) (34)

we get that M is Lorentz invariant:

M = −qeqτ
je · jτ

q2
(35)
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Feynman rules for QED

• it should be remembered that the expression

M = [ūe(p3)qeγ
µue(p1)]

−gµν
q2

[ūτ (p4)qτγνuτ (p2)] (36)

hides a lot of complexity:
• we have summed over all possible time-orderings and summed over all

polarization states of the virtual photon
• if we are presented with a new Feynman diagram we do not want to go

through the full calculation again
• fortunately, this is not necessary: can just write down matrix element using a

set of simple rules
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Quantum electrodynamics ‐ QED

γ

e
+

e
−

µ
+

µ
− Basic Feynman rules

• propagator factor for each internal line: i.e. each internal
virtual particle

• Dirac spinor for each external line, i.e. each real
incoming or outgoing particle

• vertex factor for each vertex
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Basic rules for QED

• external lines:

• internal lines (propagators):

• vertex factors:

• matrix element −iM = product of all factors
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Examples

1

ūe(p3) [ieγµ] ue(p1)

−igµν
q2

ūτ (p4) [ieγν ] uτ (p2)

−iM = [ūe(p3)ieγµue(p1)]
−igµν

q2
[ūτ (p4)ieγνuτ (p2)]

which is the same expression as we obtained previously
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Examples

2

−iM = [v̄(p2)ieγµu(p1)]
−igµν

q2
[ū(p3)ieγνv(p4)]

• at each vertex the adjoint spinor is written first
• each vertex has a different index
• the gµν of the propagator connects the indices at the vertices
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Summary

• interaction by particle exchange naturally gives rise to Lorentz Invariant Matrix
Element of the form

Mfi =
gagb

q2 − m2
x

(37)

• derived the basic interaction in QED taking into account the spins of the fermions
and polarization of the virtual photons:

−iM = [ū(p3)ieγµu(p1)]
−igµν

q2
[ū(p4)ieγνu(p2)] (38)

• we now have all the elements to perform proper calculations in QED!
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