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Quantum mechanics (reminder)
Wave function:

• quantum mechanics (QM) takes into account the wave-particle duality, and implies that
one can never predict the exact state of a particle position and momentum, with certainty

• one can thus no longer represent the state of the particle by a vector position known with
unlimited precision at each time t. Instead, the state of the particle is represented by a
wave function:

r⃗(t) =⇒ Ψ(⃗r , t) or Ψ(p⃗,E ) (1)

Meaning of the wave function:
• the concept of precise trajectory is replaced by a probability density to find the particle at

a given position at a given time:
ρ(⃗r , t) = |Ψ(⃗r , t)|2 = Ψ∗(⃗r , t)Ψ(r⃗ , t) (2)

probability ≡ ρdr3 (3)
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Quantum mechanics (reminder)
Observables:

• any measurable physical quantity A can be associated with a linear operator Â such that
if one knows Ψ(x) the expected value of that quantity can be obtained through:

⟨A⟩ =
∫

Ψ∗(x)ÂΨ(x)dx (4)

• for position, momentum (in 1D) and energy the corresponding operators and the
expectation values are:

x =⇒ X̂ = x =⇒ ⟨x⟩ =
∫

Ψ∗(x , t)xΨ(x , t)dx (5)

px =⇒ P̂x = −ih̄ ∂

∂x =⇒ ⟨px ⟩ =
∫

Ψ∗(x , t)
(
−ih̄ ∂

∂x

)
Ψ(x , t)dx (6)

E =⇒ Ê = ih̄ ∂

∂t =⇒ ⟨E ⟩ =
∫

Ψ∗(x , t)
(

ih̄ ∂

∂t

)
Ψ(x , t)dx (7)
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Quantum mechanics (reminder)
Heisenberg’s uncertainty principle:

• for two physical quantities to be simultaneously measured their operators should be
commutative, i.e., [

Â, B̂
]
= ÂB̂ − B̂Â = 0 (8)

• examples: [
X̂ , Ŷ

]
=

[
Ŷ , Ẑ

]
=

[
Ẑ , X̂

]
= 0, (9)

[
P̂x , P̂y

]
=

[
P̂y , P̂z

]
=

[
P̂z , P̂x

]
= 0, (10)

[
X̂ , P̂y

]
=

[
X̂ , P̂z

]
= 0 (11)

[
X̂ , P̂x

]
= ih̄,

[
Ŷ , P̂y

]
= ih̄,

[
Ẑ , P̂z

]
= ih̄ (12)

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 4



Quantum mechanics (reminder)
• the last Eq. 12 leads to Heisenberg’s uncertainty principle:

σxσpx >
h̄
2

(13)

• it arises due to the matter-wave nature of all quantum objects:

• (a) a pure wave of fixed frequency has no spatial
localization but p is well defined as p ∝ k ∝ 1/λ ∝ ν

• (b) a wave packet with spatial dispersion ∆x and
frequency dispersion ∆k, due to the link between the
two particle representations, the spatial dispersion is
inversely proportional to the frequency dispersion
σxσpx >

h̄
2

• (c) a pure particle is localized but has no determined
frequency

UNIVERSITEIT/
GENT/

Quantum/mechanics/(Reminder)/
• %Heisenberg’s%uncertainty%principle:%

•  It/arises/due/to/the/maferewave/nature/of/all/quantum/objects/

%
(a)  A/pure/wave/of/fixed/frequency/has/no//

spaHal/localisaHon/but//////is/well/defined/
as///

(b)  A/wave/packet/with/spaHal/dispersion/ /
and/frequency/dispersion/              ,/due/to/
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inversly/proporHonal/to/the/frequency/
dispersion:/

/

(c)  A/pure/parHcle/is/localised/but/has/no/
determined/frequency./

   
σ xσ px

> !
2

  p ∝ k ∝1/ λ ∝ν
 p

 Δx
 Δk

WaveQPar\cle%duality%
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The Schrödinger equation (1926)
• the first QM equation was established by Schrödinger for non-relativistic particles. He

assumed that the solution should be of the same form as for the electromagnetic wave:

Ψ = Ne i(kx−ωt) or Ψ = Ne i(px−Et)/h̄(as E = h̄ω, p = h̄k) (14)
• start with the non-relativistic relation between energy and momentum:

E =
p2

2m + V | ×Ψ =⇒ EΨ =
p2

2mΨ+ VΨ (15)
• take the derivative of the wave function Ψ:

∂2Ψ

∂x2
= −k2Ψ = −p2

h̄2 Ψ =⇒ p2Ψ = −h̄2 ∂
2Ψ

∂x2
(16)

∂Ψ

∂t = −iωΨ = −i E
h̄ Ψ =⇒ EΨ = ih̄∂Ψ

∂t (17)
• using Eq. 16 and 17 in Eq. 15, one gets Schrödinger equation for a non-relativistic

particle, with no spin, in a potential V :

ih̄ ∂Ψ
∂t = − h̄2

2m
∂2Ψ
∂x2 + VΨ (18)

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 6



The Schrödinger equation (1926)
Continuity equation and Quantum description:

• for some volume Vol. where no particles are created or destroyed the charge conservation
is given by:

−∂ρ

∂t︸ ︷︷ ︸
decrease of N of particles in Vol.

= ∇ · j︸︷︷︸
N of particles leaving Vol.

or ∂ρ

∂t +∇ · j = 0 (19)

where ρ is charge density and j is the current or the flux of ρ
• what is the connection with the above continuity equation in electromagnetism and a

quantum mechanical description?
• need to find what are ρ and j in quantum mechanical formalism
• for this, start with a Schrödinger equation for a free particle (V = 0):

ih̄∂Ψ
∂t +

h̄2

2m∇2Ψ = 0 (20)

• multiply Eq. 20 by Ψ∗, multiply the complex conjugate Eq. 20 by Ψ, and subtract the two
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The Schrödinger equation (1926)
• subtraction of the two equations would be:

Ψ∗
(

ih̄∂Ψ
∂t +

h̄2

2m∇2Ψ

)
−Ψ

(
−ih̄∂Ψ

∗

∂t +
h̄2

2m∇2Ψ∗
)

= 0 (21)

=⇒ ih̄
(
Ψ∗ ∂Ψ

∂t +Ψ
∂Ψ∗

∂t

)
+

h̄2

2m
(
Ψ∗∇2Ψ−Ψ∇2Ψ∗) = 0 (22)

=⇒ ∂(ΨΨ∗)

∂t +∇ ·
(
− ih̄
2m

)
( ∗∇ −  ∇ ∗) = 0 (23)

=⇒ resembles ∂ρ

∂t +∇ · j = 0 (24)
• from here:

ρ ≡ ΨΨ∗ = |Ψ|2, j = − ih̄
2m (Ψ∗∇Ψ−Ψ∇Ψ∗) (25)

where ρ is the probability density and j is current
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Plane wave example

• switching to natural units with h̄ = c = 1, for a plane wave:

Ψ = Ne i(p·r−Et) =⇒ ρ = |N|2 and j = |N|2 p
m = |N|2v (26)

• the number or particles per unit volume is |N|2
• for |N|2 particles per unit volume moving at velocity v, have |N|2v passing through a unit

area per unit time (particle flux)
• therefore j is a vector in the particle’s direction with magnitude equal to the flux
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The Klein‐Gordon equation (1926)
• following the same spirit, Oscar Klein and Walter Gordon made an attempt to find QM

equation which describes relativistic electron
• start from relativistic relation between energy and momentum for a free particle:

E2 = p2 + m2 (27)
• replace E and p with the corresponding operators:(

Ê
)2

Ψ =
(

P̂
)2

Ψ+ m2Ψ (28)

E =⇒ i ∂
∂t , px =⇒ −i ∂

∂x , py =⇒ −i ∂

∂y , pz =⇒ −i ∂

∂z (29)

(
i ∂
∂t

)2

Ψ = (−i∇)2Ψ+ m2Ψ (30)
• Klein-Gordon equation for a relativistic particle and no spin:

∂2Ψ

∂t2 = ∇2Ψ− m2Ψ (31)
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The Klein‐Gordon equation (1926)
• using ∂µ ≡ ∂

∂xµ =
(

∂
∂t ,

∂
∂x ,

∂
∂y ,

∂
∂z

)
and ∂µ∂µ = ∂2

∂t2 − ∂2

∂x2 − ∂2

∂y2 − ∂2

∂z2 can write down
Klein-Gordon equation as: (

∂µ∂µ + m2
)
Ψ = 0 (32)

Problems with the Klein-Gordon equation:
• for plane wave solutions Ψ = Ne i(p·r−Et) the Klein-Gordon equation gives:

−E2Ψ = −|p|2Ψ− m2Ψ (33)

=⇒ E = ±
√
|p|2 + m2 (34)

• this is the same result as one gets from Eq. 27
• historically, these negative solutions were viewed as problematic:

• it implied no ground state in the atoms
• transitions to lower energy states always possible
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The Klein‐Gordon equation (1926)

Problems with the Klein-Gordon equation:
• proceeding as before to calculate the probability and current densities:

ρ = i
(
Ψ∗ ∂Ψ

∂t −Ψ
∂Ψ∗

∂t

)
and j = i(Ψ∗∇Ψ−Ψ∇Ψ∗) (35)

• for a plane wave: Ψ = Ne i(p·r−Et)

ρ = 2E |N|2 and j = |N|2p (36)

• =⇒ particle densities are proportional to E : can also be negative
• how can the probability be negative? No interpretation could be made at that time
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The Dirac equation (1928)

• to summarize, at the time there were two main problems with the KG equation:
• negative energy solutions
• negative particle densities associated with these solutions

• in fact, now in Quantum Field Theory these problems are overcome and the KG
equation is used to describe spin-0 particles, e.g. pions

• back in the day, these problems led to new developments:

• they motivated Dirac to search for a different formulation of
relativistic quantum mechanics in which all particle densities
are positive

• the resulting wave equation had solutions which not only
solved this problem but also fully described the intrinsic spin
and magnetic moment of the electron!
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The Dirac equation (1928)
• Schrödinger equation:

− 1

2m∇2Ψ = i ∂Ψ
∂t (37)

• first order in ∂
∂t

• second order in ∂
∂x ,

∂
∂y ,

∂
∂z

• Klein-Gordon equation: (
∂µ∂µ + m2

)
Ψ = 0 (38)

• second order throughout
• Dirac looked for an alternative which was first order throughout:

ĤΨ = (α · p+ βm)Ψ = i ∂Ψ
∂t (39)

where Ĥ is the Hamiltonian operator and p = −i∇
New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 14



The Dirac equation (1928)
• writing down Eq. 39 in full and squaring it leads to:(

−iαx
∂

∂x − iαy
∂

∂y − iαz
∂

∂z + βm
)
Ψ =

(
i ∂
∂t

)
Ψ (40)

(
−iαx

∂

∂x − iαy
∂

∂y − iαz
∂

∂z + βm
)(

−iαx
∂

∂x − iαy
∂

∂y − iαz
∂

∂z + βm
)
Ψ = −∂2Ψ

∂t2 (41)

−∂2Ψ

∂t2 =− α2
x
∂2Ψ

∂x2
− α2

y
∂2Ψ

∂y2
− α2

z
∂2Ψ

∂z2 + β2m2Ψ (42)

− (αxαy + αyαx )
∂2Ψ

∂x∂y − (αyαz + αzαy )
∂2Ψ

∂y∂z − (αzαx + αxαz)
∂2Ψ

∂z∂x (43)

− (αxβ + βαx )m
∂Ψ

∂x − (αyβ + βαy )m
∂Ψ

∂y − (αzβ + βαz)m
∂Ψ

∂z (44)
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The Dirac equation (1928)
• for this to be a reasonable formulation of relativistic QM, a free particle must also

obey E 2 = p2 + m2 , i.e. it must satisfy the Klein-Gordon equation:

−∂2Ψ

∂t2 = −∂2Ψ

∂x2
− ∂2Ψ

∂y2
− ∂2Ψ

∂z2 + m2Ψ (45)

• hence for the Dirac equation to be consistent with the KG equation require:

α2
x = α2

y = α2
z = β2 = 1 (46)

αjβ + βαj = 0 (47)

αjαk + αkαj = 0(j ̸= k) (48)
• obviously, αi and β cannot be numbers: require 4 mutually anti-commuting

matrices
• must be (at least) 4× 4 matrices
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The Dirac equation (1928)
• consequently, the wave-function must be a four-component Dirac spinor: it has new

degrees of freedom as a result of introducing an equation that is first order in
time/space derivatives

Ψ =


Ψ1

Ψ2

Ψ3

Ψ4

 (49)

• for the Hamiltonian Ĥ = (α · p+ βm)Ψ = i ∂Ψ∂t to be Hermitian:

αx = α†
x ;αy = α†

y ;αz = α†
z ;β = β† (50)

i.e. requires four anti-commuting Hermitian 4× 4 matrices
• at this point it is convenient to introduce an explicit representation for α, β
• it should be noted that physical results do not depend on the particular

representation: everything is in the commutation relations
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Pauli spin matrices

A convenient choice is based on the Pauli spin matrices:

β =

(
I 0
0 −I

)
, αj =

(
0 σj
σj 0

)
(51)

where
I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(52)

The matrices are Hermitian and anti-commute with each other.
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Dirac equation: Probability density and current
• let’s get back to the probability density and current which were in trouble with the

KG equation
• Dirac equation:(

−iαx
∂

∂x − iαy
∂

∂y − iαz
∂

∂z + βm
)
Ψ =

(
i ∂
∂t

)
Ψ (53)

• its Hermitian conjugate:

+ i ∂Ψ
†

∂x α†
x + i ∂Ψ

†

∂y α†
y + i ∂Ψ

†

∂z α†
z + mΨ†β† = −

(
i ∂
∂t

)
Ψ† (54)

• compute Ψ†×Eq. 53−Eq. 54×Ψ taking into account that α, β are Hermitian, and
taking into account that

Ψ†αx
∂Ψ

∂x +
∂Ψ†

∂x αxΨ ≡
∂
(
Ψ†αxΨ

)
∂x (55)
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Dirac equation: Probability density and current
We get the continuity equation:

∇ ·
(
Ψ†αΨ

)
+

∂
(
Ψ†Ψ

)
∂t = 0 (56)

where Ψ† = (Ψ∗
1,Ψ

∗
2,Ψ

∗
3,Ψ

∗
4)

• the probability density and current are:

ρ = Ψ†Ψ, j = Ψ†αΨ (57)

where ρ = Ψ†Ψ = |Ψ1|2 + |Ψ2|2 + |Ψ3|2 + |Ψ4|2 > 0

• unlike the KG equation, the Dirac equation has probability densities which are
always positive

• the solutions to the Dirac equation are the four component Dirac Spinors. A
great success of the Dirac equation is that these components naturally give rise to
the property of intrinsic spin
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Covariant notation: the Dirac γ matrices
• the Dirac equation can be written more elegantly by introducing the four Dirac

gamma matrices:
γ0 ≡ β; γ1 ≡ βαx ; γ

2 ≡ βαy ; γ
3 ≡ βαz (58)

• multiplying Eq. 53 by −β one gets:(
iβαx

∂

∂x + iβαy
∂

∂y + iβαz
∂

∂z − β2m
)
Ψ = −

(
iβ ∂

∂t

)
Ψ (59)

=⇒ iγ1∂Ψ
∂x + iγ2∂Ψ

∂y + iγ3∂Ψ
∂z − mΨ = −iγ0∂Ψ

∂t (60)

• using ∂µ =
(

∂
∂t ,

∂
∂x ,

∂
∂y ,

∂
∂z

)
can rewrite as:

(iγµ∂µ − m)Ψ = 0 (61)
• the Dirac gamma matrices are not four-vectors: they are constant

matrices which remain invariant under a Lorentz transformation
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The Dirac equation: solutions
• consider a particle at rest, p = 0:

(
iγ0 ∂

∂t − m
)

Ψ1

Ψ2

Ψ3

Ψ4

, where γ0 =

(
I 0
0 −I

)
(62)

• spinor Ψ naturally splits into two 2-component bi-spinors: Ψ ≡
(
ΨA
ΨB

)
, and:

i
(

I 0
0 −I

)
∂

∂t

(
ΨA
ΨB

)
= m

(
ΨA
ΨB

)
(63)

=⇒ i ∂ΨA
∂t = mΨA, i ∂ΨB

∂t = −mΨB (64)
• the solutions are written as a function of the bi-spinors uA and uB:

ΨA(t) = uAe−imt , E > 0 : positive energy solutions (65)
ΨB(t) = uBe imt , E < 0 : negative energy solutions (66)
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The Dirac equation: solutions

• going back to Eq. 63: (
mI 0
0 −mI

)(
uA
uB

)
= m

(
uA
uB

)
(67)

• since left-hand side is diagonal, we can find decoupled solutions for uA and uB, and
choose as a set of eigenvectors:

uA =

(
1
0

)
or uA =

(
0
1

)
with E = +m (68)

uB =

(
1
0

)
or uB =

(
0
1

)
with E = −m (69)
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The Dirac equation: solutions

• putting all together, for a particle at rest we find:

Ψ
(1)
0 = N


1
0
0
0

e−imt ; Ψ
(2)
0 = N


0
1
0
0

e−imt with positive energy (70)

Ψ
(3)
0 = N


0
0
1
0

e+imt ; Ψ
(4)
0 = N


0
0
0
1

e+imt with negative energy (71)

• four solutions: two with positive energy and two with negative;
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The Dirac equation: solutions

• the fact that there are two identical fermions with the same energy implies that
there is another quantum number that allows to distinguish them, the helicity. The
corresponding operator is the operator projecting the spin on the direction of
motion:

UNIVERSITEIT/
GENT/

The/Dirac/equaHon/(1928)/

 

h=+1 positive helicity
h=−1 negative helicity

S%
  
!p

  
!p

• /Helicity://
• //each/implied/soluHons/with/idenHcal/energies/which/was/forbidden/by/
“pauli/exclusion/principle”/
• /The/fact/that/there/are/2/idenHcal/fermions/with/the/same/energy/implies/
that/there/is/another/quantum/number/that/allows/to/disHnguish/them,/the/
helicity./The/corresponding/operator/is/the/operator/projecHng/the/spin/on/
the/direcHon/of/moHon:/

!! 

ΨA = e
− iEt/! Ψ1

Ψ2

⎛

⎝
⎜

⎞

⎠
⎟

ΨB = e
+ iEt/! Ψ3

Ψ4

⎛

⎝
⎜

⎞

⎠
⎟

• /FouresoluHons:/2/with/+E#and/2/with/–E#
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Dirac's explanation for negative energy solutions

UNIVERSITEIT/
GENT/

The/Dirac/equaHon/(1928)/

The/atoms/are/observed/to/be/stable./When/an/

electron/is/on/a/high/energy/level,/it/undergoes/

transiHons/down/to/the/state/of/lowest/posiHve/

energy/not/yet/occuppied/by/2/electrons./

/

To/save/his/equaHon,/Dirac/makes/the/hypothesis/

that/all/the/states/of/negaHve/energy/are/already/

occupied/by/2/electrons,/prevenHng/another/

electron/to/reach/these/states./

/

All/these/electrons/filling/the/negaHve/states,/form/

what/was/called/the/Dirac/sea./

• Dirac’s%explana\on%for%E<0%

The atoms are observed to be stable. When an electron is on a high
energy level, it undergoes transitions down to the state of lowest
positive energy not yet occupied by 2 electrons.

To save his equation, Dirac makes the hypothesis that all the states
of negative energy are already occupied by 2 electrons, preventing
another electron to reach these states.

All these electrons filling the negative states form what was called
the Dirac sea.
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Dirac's explanation for negative energy solutions

But what happens if a sufficient energy is provided to an electron of
the sea? It appears like a hole in the sea:

Missing q = −e =⇒ Presence of q = +e
Missing E < 0 =⇒ Presence of E > 0

A hole in the electron sea at energy level E < 0 looks like an
ordinary particle with charge q = +e and energy −E > 0!

Would such positive electron exist? Then they should be identical
to the electrons, except their charge.

UNIVERSITEIT/
GENT/

The/Dirac/equaHon/(1928)/

/But/what/happens/if/a/sufficient/energy/is/provided/to/
en/electron/of/the/sea/?/It/appears/like/a/hole/in/the/
sea:/
/ / / /////looks/like/
/Missing/q/=/ee////~// /Presence/of/q/=/+e/
/Missing/E/</0 ////~ /Presence//of/E/>/0/

/
/A/hole/in/the/electron/sea/at/energy/level/E/</0,/looks/
like/an/ordinary/parHcle/with/charge/q=+e/and/energy/
–E>/0! //

/
/Would/such/posiHve/electron/exist?/Then/they/should/
be/idenHcal/to/the/electrons,/except/their/charge/
(and/a/few/other/quantum/numbers)./

• Dirac’s%explana\on%for%E<0%
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Discovery of anti‐electron (1932)
The mystery of negative energy solutions of Dirac’s equation persisted until 1932 when
C. Anderson discovered a new particle seeming identical to electron but with opposite
charge.

UNIVERSITEIT/
GENT/

Discovery/of/anHeelectron/(1932)/
• /The/mystery/of/negaHve/energy/soluHons/of/Dirac’s/equaHon/
persisted/unHl/1932/when/C./Anderson/discovered/a/new/parHcle/
seeming/idenHcal/to/electron/but/with/opposite/charge./

• /Anderson/was/a/young/physicist/invesHgaHng/cosmic/rays/@Caltech##
Anderson was a young physicist investigating cosmic rays @ Caltech
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Discovery of anti‐electron (1932)

• he used a cloud chamber - a tube full of
super-saturated liquid. Charged particles passing
through ionize it, which then seeds an ion trail
that can be photographed

• applied a uniform magnetic field
• he observed the tracks of a positively charged

particle for which the energy losses in the
Pb-plate were not compatible with those of a
proton

• on the contrary, the track looked exactly like an
electron, except the charge

This was the observation of the first antiparticle, the anti-electron, called
positron
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Discovery of anti‐electron (1932)
UNIVERSITEIT/

GENT/
Discovery/of/the/anHeelectron/

• /1933://P.%Dirac%together/with/Schrodinger/receives/the/Nobel/
Prize//

• /1936://C.%Anderson,//at/age/of/31,/becomes/the/second/youngest/
Nobel/prize/winner//

• 1933: Dirac together with Schrödinger receives the Nobel prize
• 1936: Anderson, at the age of 31, becomes the second youngest Nobel prize winner
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The antiparticles
Feynman-Stückelberg Interpretation for E < 0 (1940):

• the story of the sea of electrons was not very satisfactory (infinite negative charge
of the Universe!)

• new hypothesis supported by the positron observation
• To each particle of mass m and charge q corresponds an antiparticle of

mass m and charge −q

• Indeed, the E < 0 solution can be seen instead as
−Et =⇒ E (−t)

• corresponds to a particle of positive energy E with time
inversed

• nowadays, there is an antiparticle associated to each
known particle, making the positron discovery one of
the milestones of contemporary particle physics
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