

https://people.epfl.ch/lesya.shchutska/?lang=en

Questions on the lecture

e after going through the material of the lecture, post at least one question
through the anonymous google form:

® https://forms.gle/pGMV5PbCZKCwirM29
¢ we will go over the questions during the live lecture

MISISr@
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Cross sections and decay rates

¢ all calculations in particle physics revolve around particle interactions and
decays, i.e. transitions between states

* these are experimental observables of particle physics
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Cross sections and decay rates
® we can calculate transition rates from Fermi’s Golden Rule:

Uy = 27| Tyl *p(Ey) (1)

I'y; is number of transitions per unit time from initial state |¢) to final state
(f|: not Lorentz invariant
Ty, is transition matrix element (ME):

Ty = (f|H]i) +Z—f|HU JHE | @)
J#i

H is the perturbing Hamiltonian
p(Ey) is density of final states
/)Lates depend on matrix element (=fundamental particle physics) and
Misis Zdensity of states (=kinematics)
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Particle decay rates

e consider the two-body decay i — 1 + 2

. e want to calculate the decay rate in first order

1 /6‘ perturbation theory using plane-wave description of
the particles (Born approximation)

/ by = NeiFT=ET) _ No—ip (3)

where N is the normalization and p - « = p*z,,

MISISr@
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Particle decay rates

For decay rate calculation need to know (in a Lorentz invariant form):
1 wave-function normalisation
2 transition matrix element from perturbation theory
3 expression for the density of states
First consider wave-function normalization:
¢ non-relativistic formulation: normalized to one particle in a cube of side a:

/\I/\I/*dV =N%23=1 —= N?’=1/d} (4)

MISISr@
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Non-relativistic phase space

e apply boundary conditions: 7 = hk AN
e wave-function vanishing at box boundaries —-

quantized particle momenta: a /'\/\/

2mn 2mn 2mn a
Pe=""3 Py=—"1 pz=——; (5) a
P

a a a

¢ volume of single state in momentum space:

2r\*  (27)° 5 vl
(a) TV (®) N Z%

* normalizing to one particle/unit volume gives number of states in element
37 .
d°p = dpxdpydpz- dgﬁ 1 dgﬁ
fg) dn = T3 0, X V = 3 (7)
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Non-relativistic phase space

¢ therefore density of states in Golden rule:

dn

B | dn d|p]
P(Ef) T 4E

Ef_'dlﬁldE

Ey
¢ transformations of the elements in Eq. 8 using Eq. 7:

d7n 1 @’_ 4mp?dp - 47p?
dipl  (@2n)3*dpl  @2n)3dp  (2n)°

d
E?=p? +m? — 2EdE = 2pdp — dg -
47rp? 1
— p(Bp) = —L x
r@ (2m)’ B
MISIS
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Dirac )-function

¢ in the relativistic formulation of decay rates and cross sections we will make
use of the Dirac ¢ function: “infinitely narrow spike of unit area”

§(x—a) - / T S — a)dr = 1 (12)

—00

[ r@ite - aae=s@ 9
a X >

¢ any function with the above properties can represent 4(x), e.g.

d(x) = lim L e_<%) (14)

c—=0 /270

- an infinitesimally narrow Gaussian

MISISr@
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Dirac 0-function: use example

e in relativistic quantum mechanics delta functions prove extremely useful for
integrals over phase space, e.g. in the decay i — 1 + 2:

/...5(Ei — E, — Ey)dE and /...53(@» — 71— po)d3p (15)

express energy and momentum conservation

i
-

2

MISISr@
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Dirac /-function of a function

An expression for the 4-function of a function o(f(z)):

e start from the definition of a delta function:

f(x)
Y2 1 ify <0<y
" oy)dy _{ 0 otherwise .
o~ ¥
® now express in terms of y = f(z), where f(zg) =0, S(f(x))
and then change variables:
L2 df . 1 ifzy <x9 <29 >
/I1 O (@) gy de = { 0 otherwise ' X0 ¥

MISISr@
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Dirac /-function of a function

e from properties of the §-function (i.e. here only non-zero at z):

df
dx

2 N 1 ifa:1<:vg<x2
/x1 O (@))dz = { 0 otherwise
¢ rearranging and expressing RHS as a o¢-function:

/x 5(f(x))dz L / " (@ — z0)da

~ldrjdel,, L,
— | 80/@) = [4]o(e —w0)

MISISr@
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The Golden Rule revisited
Tt = 2n|Ts | p(Ey) (18)

e rewrite the expression for density of states using a §-function:

— / %5(1@ — E;)dE since E; = E; (19)

Note: integrating over all final state energies but energy conservation now
taken into account explicitly by §-function

¢ hence the golden rule becomes an integral over all “allowed” final states of
any energy:

MISISr@

Ty =27 / T4:|?6(E; — E)dn (20)

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 13



The Golden Rule revisited

e for dn in a two-body decay, only need to consider one particle, as momentum
conservation fixes the other:
d3p]
- (21)

Ty = 27r/ T4i|?6(E; — Ey — E»)
(2m)

e however, can include momentum conservation explicitly by integrating over
the momenta of both particles and using another ¢-function:
N L
Ty = (2m)* / Tpi 2 0(B: — By — Bo) (5 — 1 — ) — g g
~ ~ - ~ (2m)” (27)
N————

E conservation p conservation

density of states

MISISr@
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Lorentz invariant phase space

* in non-relativistic QM normalize to one particle/unit volume: [ ¥*¥dV =1

¢ when considering relativistic effects, volume contracts by v = E/m
—

= S
a8 a NN

a
a aly

¢ particle density therefore increases by v = E/m: hence a relativistic invariant
wave-function normalisation needs to be proportional to E particles per unit
volume

MISISr@)
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Lorentz invariant phase space

e usual convention: normalize to 2E particles/unit volume: [ U™*W/'dV = 2F

e hence ¥ = (2E)"/?W is normalized to 2E per unit volume

e define Lorentz invariant matrix element, M ;, in terms of the wave-functions
normalized to 2F particles per unit volume:

My = (U} - WY |H|.. W, _ W) = (2B - 2By ... 2B, - 2B,)"/?Ty; | (23)

MISISr@
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Two-body decay

My; = (U} - Wh|H|W}) = (2B, - 2By - 2B5)"/? (W1 - Wo| H| ) (24)
=(2E; - 2F; - 2E2)*Ty; (25)

e expressing TY; in terms of My; gives:

(27r d3py d3ps

(2m)*28, (27)32F,

Ly = f’M 26(E; — By — E»)5%(p; — p1 — pa) (26)

® My, uses relativistically normalized wave-functions and it is Lorentz invariant

° (235% is the Lorentz invariant phase space for each final state particle: the
factor of 2F arises from the wave-function normalization

MISISr@
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Two-body decay

e this form of I'y; is simply a rearrangement of the original equation but the
integral is now frame independent

* I'y; is inversely proportional to E;, the energy of the decaying particle: this is
what’s expected from the time dilation

e energy and momentum conservation is in the §-functions

MISISr@
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Decay rate calculations

(

d3py d3ps

2m)? - o o
Ffi = QE)' /|Mfz|2(5(Ez —FE — E2>53(pi —P1 _p2)
i

(2m)*2E; (27)32F,

(27)

¢ since the integral is Lorentz invariant it can be evaluated in any frame: the

C.o.M. frame is most convenient
e inthe C.o.M. frame E; = m; and p; =0 —

1 o -
/’Mﬁ\Q(S(mi — By — E2)8(p1 + p2)

d*py d*ph
8T E;

2F, 2FE»

e integrating over p> using the §-function:

1
Lri= 8m2E;
M|S|Sr.:)
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Decay rate calculations

* now E2 = m3 + || since the §-function imposes 7> = —p)
e writing d3p; = pldpl sin dfd¢ = p%dpldQ

dpldQ

MISISr@
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Decay rate calculations

e which can be written in the form:
1 2
Uji= gy | IMPaed(7 (o) dpid®

—1/2 —1/2
where g(p1) = p2/(E1Ey) = p2(m2 + p3) " (md +p2) "/

and f(p1) = mi — (m2+p3) "% = (m3+p2)"/”

¢ note that (f(p1)) imposes energy conservation
® f(p1) = 0 determines the C.0.M. momenta of the two decay products, i.e.
f(p1) =0forpr = —py =p*

MISISr@
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Decay rate calculations

¢ integrating Eq. 31 using the property of é-function from Eq. 17:

/ 9(p)5(f (p1))dpy = / 9(p)6(p — p*)dpy = —I&) (34)

1
‘df/dp1|p* |df/dp1|p*

where p* is the value for which f(p*) =0

MISISr@
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Decay rate calculations

® now we need to evaluate df/dpy:
LA S SN A S
e miap)'” mieg)) B B ks
D) pi
; dQ2
= =55 2E /‘ sl pi(Br + Bs) BBy |, .
b1
= — M| =——— de)
327['2Ei/‘ il Ey+ Eal, _,

¢ but from f(p;) = 0, i.e. energy conservation: E; + E; = m;

D" | /
Ty = M| %dQ
I 392 Eim; Myl

Basics of Particle Physics - Track 1, Lecture 3
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Decay rate calculations

¢ in the particle’s rest frame E; = m;:

1 " / 2
—=I= Mr;|7d)
T 32m2m? My

valid for all two-body decays
® p* can be obtained from f(p;) = 0:

(m? +p*?) Y2y (m3 + 19*2)1/2 =m;

— " = 5/ = o ma)?] [ — Gt — o))

MISISr@
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Cross section definition

number of interactions per unit time per target
o= — (42)
incident flux

where flux = number of incident particles/unit area/unit time

e the “cross section”, o, can be thought of as the effective cross-sectional area
of the target particles for the interaction to occur

¢ in general, this has nothing to do with the physical size of the target although
there are exceptions, e.g. neutron absorption

MISISr@
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Differential cross section definition

. . d
Differential cross section: d—g

do _ number of interactions per unit time per target into dQ2
dQ incident flux

€N dQ =d(cosB)do

e / do
with |0 = [ —dQ
D \ integrate over all
other particles

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 26

MISISr@



Cross section: example

e consider a single particle of type a with velocity, v,, traversing a region of area
A containing n, particles of type b per unit volume:

(Va + Vb)al‘

in time 6t a particle of type a traverses region
containing ny (v, + vp) Adt particles of type b A

e interaction probability obtained from effective cross-sectional area occupied
by the ny (v, + vp) Adt particles of type b:

ny(ve + vp) Adto
A

= mpudto, v =v,+ vy (44)

— rate per particle of type a is nyvo

MISISr@
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Cross section: example

e consider volume V/, total reaction rate:

(npvo) - (naV) = (nyV)(nav)o = Npgeo

¢ i.e. rate = flux x number of targets x cross section

MISISr@
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Cross section calculations

consider scattering process 1 +2 — 3+4
start from Fermi’s Golden Rule:

. . . L d3ps A3y,
L'y = (27T)4/!Tf¢!25(E1 + By — B3 — Eq)0(P1 + o — s — ) 2p3 o

where T7; is the transition matrix for a normalization of 1/unit volume

Rate/Volume = (flux of 1) x(number density of 2)xo = ni(v1 + v2) X ng X o
Ly

V1 + U2

d*ps d*pi

(2m)° (27)°

N————’

for 1 target particle per unit volume, rate = (v; + v2)0 = o =

B (277)4
v+
——

/ T34 6(Es + Ba — By — E)6* (B + s — B — i) (47)
~——

these parts are not Lorentz invariant
MISISr:.)
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Cross section calculations

e to obtain a Lorentz invariant form use wave-functions normalised to 2F
particles per unit volume: ¥ = (2E)'/2¥
e again define L.I. matrix element M; = (2E12E22E32Ey) " *Ty;
(2m) 2

o = 2E12E2(ru1 + 1)2 /lez| 6(E1 + E2 - E3 — E4)(S (pl +p2 ps p4)

d?ps d*py
2FE3 2FE,

(48)

¢ the integral is now written in a Lorentz invariant form
¢ the quantity F' = 2E12F>(v; + v2) can be written in terms of a four-vector
scalar product and is therefore also Lorentz invariant:

1/2
F =4 |(pk'pay)? — mim3 (49)

ﬁg)consequently cross section is a Lorentz invariant quantity
MISIS
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Two special cases of Lorentz Invariant Flux

1 Center-of-Mass frame:
F :4E1E2(’U1 + UQ)
P | 1P|
=AFE By S + -
1 2<E1 + o
=4|p*|(E1 + Es)
=4[p"|/s

2 Target particle (particle 2) at rest:
F =4FE1Es(v1 + v2)
=4F1mov;
|p1 |

:4E]_ mo Fl

=4ma|pi|
M|S|Sr@

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3



2 — 2 body scattering in C.0.M. frame

We will now apply above Lorentz invariant formula for the N /ﬁ} i~
interaction cross section to the most common cases here. ot )
First consider 2 — 2 scattering in C.0.M. frame 4ﬁ?

e gstart from:

(2m) / d3ps d3py

= Mpe|%0(E Ey — Eq — E4)8° —
o SE2Es (0, T 03) |Mi|*6(Fy + Eo — B3 — E4)8(py + P — ps — p4)2E3 2F,
(58)

e herep; +po=0and E; + Es = /s
d3ps d3py
o 3

7= 4!”*\\f/|M Fo(Vs = By — Ea)0° (7 o o, 9

MISISr@

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 32



2 — 2 body scattering in C.0.M. frame

e the integral is exactly the same integral that appeared in the particle decay
calculation with m; replaced by +/s:

—2 |}l
—1 /M 4o (60)
4|p g | 1M
1|5l 2
) * 1
64 23|w‘ j |]\/[fl| dQ (61)

MISISr@
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2 — 2 body scattering in C.0.M. frame

e in the case of elastic scattering [p}| = |p7}|: 1 e o 3

1 .
Oelastic = 647r25/|Mfi‘2dQ (62) 2 HKW 4

e for calculating the total cross section (which is Lorentz invariant) the result on
the previous page is sufficient. However, it is not so useful for calculating the
differential cross section in a rest frame other than the C.0.M:

1 1}

do = Leil
7= 64n2s p7]

| M | *dQ* (63)

because the angles in dQ2* = d(cos 6*)d¢* refer to the C.0.M. frame
e for the last calculation in this section, we need to find a L.l. expression for do
MISISQ

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 34



2 — 2 body scattering in C.0.M. frame
e start by expressing dQ2* in terms of Mandelstam ¢, i.e. square of the
4-momentum transfer,
t=q*=(p1—p3)® = D7 +p3—2p1-p3 =mi +m3 — 2p1 - p3
In C.o0.M. frame:

e~ P‘f P? e
p?u = (Efa Oa 07 |pT|) 64 \)\‘LLL/;_ pll1 —p’;
* [ * —k . —k * 65

(64)
p3" = (E3, |p3|sin 0,0, |p3| cos 67) (65) x ,
Pips, = ELES — |55 cos 6" ®) ‘ 5
t =m3 +m3 — EfE} + 2|p}||p%] cos 6* (67) 1/ﬂ 2
|| =k * 4/7])4
= dt = 2|p7||p5|d(cos %) (68)
dtde*
= dQ* =d(cos0")do* = ——F== (69)
2|pi 153
1 !pfl 1
— do — _|MypyPdetdt 70
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2 — 2 body scattering in C.0.M. frame
e finally, integrating over d¢* (assuming no ¢* dependence of ]Mf,-\g):
dU 1 Affl|2

dt — 64rs|pr)?

(71)

¢ all quantities in this expression are L.I. and therefore, it applies to any rest
frame. Also note that |5;|? is a constant, fixed by energy/momentum
conservation:
» 1
il = 7[5 = Omu+m2)?] [s = (my = mo)’] (72)
¢ as an example of how to use the invariant expression do/d¢ we will consider
elastic scattering in the laboratory frame in the limit where we can neglect the
mass of the incoming particle E; > mq, e.g. electron or neutrino scattering

e in this limit |5%|* = (s — m2)?/(4s) and

do 1 9

— = —————| My (73)
2 2’ fi

MISISr.) dt  167(s —m3)
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2 — 2 body scattering in lab. frame

¢ the other commonly occurring case is scattering from a fixed target in the
Laboratory Frame (e.g. electron-proton scattering)

e first, take the case of elastic scattering at high energy where the mass of the
incoming particles is neglected: my =m3 =0, my =my =M

(E3,|psl) 3 le e 3

4 X X 4

(E4= ’1_54‘)

¢ wish to express the cross section in terms of scattering angle of the e:
dQ = 27d(cos 6)
do  do dit i t do

I a0~ 2rd(cosh) dt (74)

MISISr@
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2 — 2 body scattering in lab. frame
e four-momenta of particles:

p1 = (£1,0,0, E) (75)
pe = (M,0,0,0) (76)
p3 = (E3, E3sin 6,0, E5 cos ) (77)
pa = (B4, Pa) (78)
— t=(p1 —p3)*> = —2p1 - p3 = —2E1 F3(1 — cos ) (79)

e from (Z, p) conservation p; + p2 = p3 +ps = can express t in terms of

particles 2 and 4:
t:(pg—p4)2:2M2—2p2-p4:2M2—2ME4 (80)
=2M? —2M(Ey + M — E3) = —2M(E; — E3) (81)
e F is a constant (the energy of the incoming particle), hence:
dt dE

M|s|5r@ d(cos ) - d(cosgﬁ) (82)

New Technologies for New Physics Basics of Particle Physics - Track 1, Lecture 3 38



2 — 2 body scattering in lab. frame
e equating the two expressions for ¢ gives:

EtM
Es =
M + Ei — Eqcosf
dBy  _ E?M _ oy B *_EB}
d(cos®) (M + E; — Ej cos0)? ! EiM M
do 1 dt do 1 _ Fido FEj}do E? 1 2
=5 =S = 310y

diQ:%d(COSO)E_QW Mdt 7 dt 7w 16m(s — M?)

® using s = (p1 +p2)? = M? +2py - py = M? + 2M E), as p? = 0, gives
(s — M?) = 2ME,

My,|? |in the limit of m; — 0

do 1 By \2
A0~ 64n2\ ME
MISISr@ !
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2 — 2 body scattering in lab. frame
e in this equation, Ej5 is a function of 6:

EtM
E;5 = 87
3 M + E; — Eqcosf (87)
e giving
dO' 1 1 2 2
— = My; 88
dQ 64772<]W+E1—E10059> Mgl (88)
General form for 2 — 2 body scattering in lab. frame:
¢ in case the mass m; cannot be neglected, after a similar procedure:
dQ 6472 p1mi ’ﬁg‘(El + /mg) — Fj5 ‘ﬁl‘ cos fi

There is only one independent variable, 6, from conservation of energy:

Mls{@ Ey +mg = \/|ﬁg,|2+m§+\/sz?1|2+|133|2—2|;31|yﬁg,|cos0+m?L (90)
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Summary

Used a Lorentz invariant formulation of Fermi’s Golden Rule to derive decay rates
and cross-sections in terms of the Lorentz Invariant Matrix Element
(wave-functions normalized to 2E/Volume)

Main results:

e particle decay:

= 32 2 /|Mfl\ dQ2 (91)

where p* is a function of particle masses:
P = ﬁ\/[mf — (m1+ m2)2] [m? —(m1 — mg)z}
e scattering cross section in C.0.M. frame:

1 [P} 9
My |2do* 2
" Gdn?s Ipl/|f‘ 92)

MISISr@
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Summary
¢ invariant differential cross section (valid in all frames):

do 1 2

—=——= [ |My 93

dt 647TS|]3;9‘\2/’ sil (93)
1

where |pf? = L [s — (m1 + m2)?] [s — (m1 — mg)?]
e differential cross section in the lab. frame (m; = 0):

do 1 Es 2 2 do 1 1 2 9
a0 = My T0 My; 94
dQ - 6472 <ME1> Myl “ a0 642 <M+E1—E1(ZOS€> Myl 54)

e differential cross section in the lab. frame (m; # 0):

do 1 1 |5
dQ  64n% |pilmy  |p3|(E1 + ma2) — E3|pi|cosf

| Mg (95)

misis with By + m, — \/Iﬁsl2 3 /|12 + [ — 2057 cos 0 + m3
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Summary

e Have now dealt with kinematics of particle decays and cross sections
® The fundamental particle physics is in the matrix element
* The above equations are the basis for all calculations that follow

MISISr@
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