New Technologies for New Physics

Part I – Basics of Particle Physics

Lecture 4

Vladimir Shevchenko

2020

- Symmetries (of the Standard Model and beyond)
- Open questions to the Standard Model
- Motivations for physics beyond the Standard Model

Symmetry

2) what is the metrics chosen for comparison

«It is better to be wealthy and healthy than poor and ill»

Is it better to be wealthy and ill than poor and healthy?

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 3/44

Maximal symmetry is usually not of much interest...

But if the symmetry violation is *too strong*, harmony is lost...

Symmetry

There are three sorts of symmetries relevant for the physics of fundamental matter properties.

- External continuous symmetries, related to coordinate transformations
- Internal symmetries, related to quantum numbers
- Discrete symmetries (charge conjugation and space-time reflections)

Moreover, the SM has many built in small/large parameters:

- Dimensionless interaction constants
- Rank of color gauge group SU(3)
- Quark masses in strong interaction scale units
- Strong to weak scales ratio
- Ratios of Yukawa constants, e.g.
- Quark mixing parameters

...

 $1/9 = 1/3^2$ $\frac{m_{u,d}}{\Lambda} = (0.5 \div 2)\%$ $G_F m_p^2 = 1 \cdot 10^{-5}$ $\frac{m_e}{m_t} = 3 \cdot 10^{-6}$ $\lambda = |V_{us}| = 0.22$

 $\alpha_{em}^{-1} = 137 \quad \alpha_s^{-1}(M_Z) = 8.5$

For almost any of them, there is a corresponding approximate symmetry of the SM which can be used for construction of the perturbation theory.

Basics of Particle Physics – Track I, Lecture 4 6/44

External symmetries

The fact that invariance of a system's Lagrangian lead to some conservation law is one of the most beautiful results in theoretical physics and is known as the **Noether's** theorem.

To illustrate the point, consider one degree of freedom mechanical system with the action

$$\mathcal{A} = \int_{t_a}^{t_b} dt \, L(q(t), \dot{q}(t), t)$$

Suppose the action is invariant under transformation $q(t) \rightarrow q'(t) = f(q(t), \dot{q}(t))$ or, in infinitesimal form, $\delta_s q(t) \equiv q'(t) - q(t) = \epsilon \Delta(q(t), \dot{q}(t), t)$

$$\delta_{s}\mathcal{A} = \int_{t_{a}}^{t_{b}} dt \begin{bmatrix} \frac{\partial L}{\partial q(t)} & \partial_{t} \frac{\partial L}{\partial \dot{q}(t)} \end{bmatrix} \delta_{s}q(t) + \frac{\partial L}{\partial \dot{q}(t)} \delta_{s}q(t) \Big|_{t_{a}}^{t_{b}}$$

vanishes on equations of motion

since the time boundaries are arbitrary, we get for the quantity $Q(t) = \frac{\partial L}{\partial \dot{a}} \Delta(q, \dot{q}, t) - \Lambda(q, \dot{q}, t)$

conserved Noether charge

E.Noether (1882 – 1935)

So, if $\delta_{\mathrm{s}}\mathcal{A}$ vanishes, or even

$$\delta_{\rm s} \mathcal{A} = \epsilon \Lambda(q, \dot{q}, t) \Big|_{t_a}^{t_b}$$

$$\frac{d}{dt}Q(t) = 0$$

This reasoning can be generalized to many degrees of freedom, to relativistic case, to field theory etc. For example, for complex scalar field with the Lagrangian $L = \frac{1}{2}(\partial_{\mu}\phi^{*})(\partial^{\mu}\phi) - \frac{1}{2}m^{2}\phi^{*}\phi$ the action is invariant under (global) field transformation $d^{\mu}(x) = e^{i\alpha}\phi(x)$ the Noether current $j_{\mu} = i[(\partial_{\mu}\phi^{*})\phi - \phi^{*}(\partial_{\mu}\phi)]$ is conserved $\partial^{\mu}j_{\mu} = 0$

We associate this with the electric charge conservation.

Problem 1: show this!

Symmetry	Conserved quantity
Spatial rotation	Angular momentum
Temporal translation	Energy
Spatial translation	Momentum
Electromagnetic gauge invariance*	Electric charge

Comment I: the so called 1st Noether's theorem deals with global invariances. In case of local symmetries the Noether currents vanish (the 2nd Noether's theorem, see the next slide).

Comment II: neither all symmetries nor all conservation laws are Noether-like.

Internal continuous symmetries

There is another deeply nontrivial class of symmetries of the SM. These are continuous internal symmetries, i.e. symmetries, associated with local transformations of the SM fields. The best know is electromagnetic gauge symmetry.

The key idea is that different configurations of dynamical variables describe one and the same set of physical observables. Theory is local (and hence elegant and economical) in terms of non-observable potentials, while non-local (and hence cumbersome) in terms of observable field strengths).

$$\psi(x) \rightarrow \psi'(x) = e^{i\phi(x)}\psi(x) \implies \bar{\psi}(x)(\partial_{\mu} - iA_{\mu}(x))\psi(x) \iff A_{\mu}(x) \rightarrow A_{\mu}(x) + \partial_{\mu}\phi(x)$$
non-observable phase
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
observable field
$$L_{int} = e \int j_{\mu}(x)A^{\mu}(x)d^{4}x$$
nonlocal interaction
$$Comment III: \text{ in quantum theory, the Noether's theorem}$$
analog is known as Word-Takahashi and Slavnov-Taylor
identities, which have a form of relations between
$$k_{\mu} \cdot \left(\mu \swarrow \bigvee_{k} \bigvee_{p}^{p+k}\right) = e \left(\bigvee_{p}^{p+k} \bigvee_{p+k}^{p+k} \right)$$

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 9/44

Discrete symmetries

The crucial role in the SM is played by discreet symmetries:

- Parity P $\mathbf{x}
 ightarrow -\mathbf{x}$
- Time reversal ${f T}$ t
 ightarrow -t
- Charge conjugation ${f C} \qquad e
 ightarrow -e$

Mechanical (and electromagnetic) interactions are invariant under **C**, **P**, **T** or any combination.

Physically, **CPT** theorem means that our 3+1-dimensional world made of particles is indistinguishable from the world made of antiparticles, if they move along the same worldlines backwards.

In particular, the mass of any particle must be exactly equal to the mass of its antiparticle (experimentally confirmed for K-mesons at the level 1 to 10¹⁸).

New Technologies for New Physics

There is an important statement known as **CPT** theorem:

Every local Lorentz-invariant field theory with Hermitian Hamiltonian is **CPT**-even.

J.Schwinger, 1951, G.Lüders, W.Pauli, 1954

Tests of CPT Invariance

In the SM one can discuss discrete symmetries of interactions and internal discret symmetries of particles. The latter are defined for the eigenstates of discret symmetry operator. For example, electron is not eigenstate of charge conjugation, because $|\mathbf{C}|e^-\rangle = |e^+\rangle$ while photon is: $|\mathbf{C}|\gamma\rangle = c|\gamma\rangle$ with c = -1

If interaction conserves the corresponding parity (as electromagnetic and strong interactions in the SM do), parity of the initial state must be equal to parity of the final state. This is a crude but useful tool.

Conventionally one defines intrinsic **P**-parity of the SM particles as

this choice correspond to vector nature of electromagnetic field

 $\mathbf{P}|e^{-}\rangle = \mathbf{P}|\nu\rangle = \mathbf{P}|q\rangle = 1 \qquad \qquad \mathbf{P}|e^{+}\rangle = \mathbf{P}|\bar{\nu}\rangle = \mathbf{P}|\bar{q}\rangle = -1 \qquad \qquad \mathbf{P}|\gamma\rangle = -|\gamma\rangle$

However the statement that parities of a particle and an antiparticle are opposite is **not** a matter of convention. For quark-antiquark bound states such as mesons

$$\mathbf{P}_{\mathrm{meson}} = (-1)^{L+1}$$

C-parity is defined for neutral mesons only by interchanging quark and antiquark and swapping their positions and spin: $\mathbf{C}_{\text{meson}} = (-1)^{L+S}$

It is convenient to mark particles by $_J^{PC}$

symbols (where **C** is to be written only for **C**-parity eigenstates).

Problem 2: compare decay modes $\rho^0 \to \pi^+\pi^-$ and $\rho^0 \to \pi^0\pi^0$ from **P**- and **C**- parity conservation point of view.

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 11/44

Example from Particle Data Group tables

γ (photon)

$$I(J^{PC}) = 0,1(1^{--})$$

Mass $m < 1 imes 10^{-18}$ eV Charge $q < 1 imes 10^{-35}$ e Mean life au = Stable

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

TESTS OF DISCRETE SPACE-TIME SYMMETRIES

CHARGE CONJUGATION (C) INVARIANCE

 $<1.4 \times 10^{-6}$, CL = 90%

PARITY (P) INVARIANCE

$ (J/\psi(1S) \rightarrow \gamma \gamma) _{total}$ $<2.7 \times 10^{-1}$, $CL = 90\%$	$\begin{split} & \Gamma(\pi^0 \to 3\gamma)/\Gamma_{\text{total}} \\ & \eta \text{ C-nonconserving decay parameters} \\ & \pi^+\pi^-\pi^0 \text{ left-right asymmetry} \\ & \pi^+\pi^-\pi^0 \text{ gestant asymmetry} \\ & \pi^+\pi^-\eta^0 \text{ gestant asymmetry} \\ & \pi^+\pi^-\gamma \text{ left-right asymmetry} \\ & \pi^+\pi^-\gamma \text{ parameter } \beta \text{ (}D\text{-wave)} \\ & \Gamma(\eta \to \pi^0\gamma)/\Gamma_{\text{total}} \\ & \Gamma(\eta \to 2\pi^0\gamma)/\Gamma_{\text{total}} \\ & \Gamma(\eta \to 3\pi^0\gamma)/\Gamma_{\text{total}} \\ & \Gamma(\eta \to 3\pi^0\gamma)/\Gamma_{\text{total}} \\ & \Gamma(\eta \to \pi^0e^+e^-)/\Gamma_{\text{total}} \\ & \Gamma(\eta \to \pi^0e^+e^-)/\Gamma_{\text{total}} \\ & \Gamma(\omega(782) \to \eta\pi^0)/\Gamma_{\text{total}} \\ & \Gamma(\omega(782) \to 2\pi^0)/\Gamma_{\text{total}} \\ & \Gamma(\omega(782) \to 3\pi^0)/\Gamma_{\text{total}} \\ & \Gamma(\omega'(782) \to 3\pi^0)/\Gamma_{\text{total}} \\ & \Gamma(\eta'(958) \to \pi^0e^+e^-)/\Gamma_{\text{total}} \\ & \Gamma(\eta'(958) \to \eta e^+e^-)/\Gamma_{\text{total}} \\ & \Gamma(\eta'(958) \to \eta e^+e^-)/\Gamma_{\text{total}} \\ & \Gamma(\eta'(958) \to \mu^+\mu^-\pi^0)/\Gamma_{\text{total}} \\ & \Gamma(\eta'(958) \to \gamma\gamma)/\Gamma_{\text{total}} \\ & \Gamma(J/\psi(15) \to \gamma\gamma)/\Gamma_{\text{total}} \\ \end{array}$	$ < 3.1 \times 10^{-8}, CL = 90\% $ $ (0.09^{+0.11}_{-0.12}) \times 10^{-2} $ $ (0.12^{+0.10}_{-0.11}) \times 10^{-2} $ $ (-0.09 \pm 0.09) \times 10^{-2} $ $ (0.9 \pm 0.4) \times 10^{-2} $ $ -0.02 \pm 0.07 (S = 1.3) $ $ [a] < 9 \times 10^{-5}, CL = 90\% $ $ < 5 \times 10^{-4}, CL = 90\% $ $ < 1.6 \times 10^{-5}, CL = 90\% $ $ < 1.6 \times 10^{-5}, CL = 90\% $ $ < 2.2 \times 10^{-4}, CL = 90\% $ $ < 2.2 \times 10^{-4}, CL = 90\% $ $ < 2.2 \times 10^{-4}, CL = 90\% $ $ < 2.3 \times 10^{-4}, CL = 90\% $ $ < 2.4 \times 10^{-3}, CL = 90\% $ $ < 1.6 \times 10^{-5}, CL = 90\% $ $ < 1.0 \times 10^{-4}, CL = 90\% $ $ < 1.0 \times 10^{-4}, CL = 90\% $ $ < 1.0 \times 10^{-4}, CL = 90\% $ $ < 1.0 \times 10^{-4}, CL = 90\% $ $ < 1.0 \times 10^{-4}, CL = 90\% $ $ < 1.0 \times 10^{-4}, CL = 90\% $ $ < 1.0 \times 10^{-4}, CL = 90\% $ $ < 1.5 \times 10^{-5}, CL = 90\% $ $ < 1.5 \times 10^{-5}, CL = 90\% $ $ < 2.7 \times 10^{-7}, CL = 90\% $	$\begin{array}{l} e \mbox{ electric dipole moment } \mathbf{d} \\ \mu \mbox{ electric dipole moment } \mathbf{d} \\ \mathrm{Re}(d_{\pi}=\tau \mbox{ electric dipole moment)} \\ \Gamma(\eta \rightarrow \pi^+\pi^-)/\Gamma_{\mathrm{total}} \\ \Gamma(\eta \rightarrow 2\pi^0)/\Gamma_{\mathrm{total}} \\ \Gamma(\eta \rightarrow 4\pi^0)/\Gamma_{\mathrm{total}} \\ \Gamma(\eta'(958) \rightarrow \pi^+\pi^-)/\Gamma_{\mathrm{total}} \\ \Gamma(\eta'(958) \rightarrow \pi^0\pi^0)/\Gamma_{\mathrm{total}} \\ \Gamma(\eta_c(15) \rightarrow \pi^+\pi^-)/\Gamma_{\mathrm{total}} \\ \Gamma(\eta_c(15) \rightarrow \pi^0\pi^0)/\Gamma_{\mathrm{total}} \\ \Gamma(\eta_c(15) \rightarrow K^+K^-)/\Gamma_{\mathrm{total}} \\ \Gamma(\eta_c(15) \rightarrow K^0_S K^0_S)/\Gamma_{\mathrm{total}} \\ \mu \mbox{ electric dipole moment} \\ n \mbox{ electric dipole moment} \\ A \mbox{ electric dipole moment} \\ a_P(A_B^0 \rightarrow p\pi^-\pi^+\pi^-) \\ a_P(A_B^0 \rightarrow pK^-K^+\pi^-) \\ a_P(A_B^0 \rightarrow pK^-K^+K^-) \\ a_P(A_B^0 \rightarrow pK^-K^+K^-) \\ a_P(A_B^0 \rightarrow pK^-K^+K^-) \\ a_P(A_B^0 \rightarrow pK^-K^+K^-) \\ a_P(A_B^0 \rightarrow pK^-K^-\pi^+) \end{array}$	$ \begin{array}{l} < 0.11 \times 10^{-28} \ ecm, \ {\rm CL} = 90\% \\ < 1.8 \times 10^{-19} \ ecm, \ {\rm CL} = 95\% \\ - 0.220 \ to \ 0.45 \times 10^{-16} \ ecm, \ {\rm CL} = 95\% \\ < 1.3 \times 10^{-5}, \ {\rm CL} = 90\% \\ < 3.5 \times 10^{-4}, \ {\rm CL} = 90\% \\ < 6.9 \times 10^{-7}, \ {\rm CL} = 90\% \\ < 1.8 \times 10^{-5}, \ {\rm CL} = 90\% \\ < 4 \times 10^{-4}, \ {\rm CL} = 90\% \\ < 4 \times 10^{-5}, \ {\rm CL} = 90\% \\ < 4 \times 10^{-5}, \ {\rm CL} = 90\% \\ < 4 \times 10^{-5}, \ {\rm CL} = 90\% \\ < 6 \times 10^{-4}, \ {\rm CL} = 90\% \\ < 6 \times 10^{-4}, \ {\rm CL} = 90\% \\ < 0.021 \times 10^{-23} \ ecm \\ < 0.021 \times 10^{-25} \ ecm, \ {\rm CL} = 90\% \\ < 1.5 \times 10^{-16} \ ecm, \ {\rm CL} = 95\% \\ (-3.7 \pm 1.5)\% \\ (-6 \pm 1.5)\% \\ (-5 \pm 5)\% \\ (-3 \pm 5)\% \end{array} $
$(J/\psi(13) \rightarrow \gamma\gamma)/(tota)$ $(2.1 \times 10^{-3}, CL = 90\%)$	$(J/\psi(13) \rightarrow \gamma\gamma)/(total)$	$<2.7 \times 10^{-7}$, CL = 90%		
	$\Gamma(1/\psi(1S) \rightarrow \gamma \gamma)/\Gamma$	$< 2.7 \times 10^{-7}$ CL = 90%	- 0	
		$[b]$ <1.5 × 10 $^{-5}$, CL = 90%	$a_P(\Xi \tilde{B} \to \rho K^- K^- \pi^+)$	$(-3 \pm 5)\%$
$\Gamma(\eta'(958) \to \mu^+ \mu^- \eta) / \Gamma_{\text{total}} \qquad [b] <1.5 \times 10^{-5}, \text{ CL} = 90\% \qquad a_P(\Xi_b^0 \to \rho K^- K^- \pi^+) \qquad (-3 \pm 5)\%$			$a_P(\Lambda_b^0 \to \rho K^- \mu^+ \mu^-)$	$(-5 \pm 5)\%$
$ \begin{array}{ll} \Gamma(\eta'(958) \to \ \mu^+ \mu^- \pi^0) / \Gamma_{\text{total}} & [b] & <6.0 \times 10^{-5}, \ \text{CL} = 90\% & a_P (\Lambda_D^0 \to \ \rho \text{K}^- \mu^+ \mu^-) & (-5 \pm 5)\% \\ \Gamma(\eta'(958) \to \ \mu^+ \mu^- \eta) / \Gamma_{\text{total}} & [b] & <1.5 \times 10^{-5}, \ \text{CL} = 90\% & a_P (\Xi_D^0 \to \ \rho \text{K}^- \pi^+) & (-3 \pm 5)\% \end{array} $			$a_P(\Lambda^0_b \to pK^-K^+K^-)$	$(-1.6 \pm 1.5)\%$
$ \Gamma(\eta'(958) \to \mu^+ \mu^- \pi^0) / \Gamma_{\text{total}} $ $ [b] < 6.0 \times 10^{-5}, \text{ CL} = 90\% $ $ \Gamma(\eta'(958) \to \mu^+ \mu^- \eta) / \Gamma_{\text{total}} $ $ [b] < 1.5 \times 10^{-5}, \text{ CL} = 90\% $ $ a_P(\Lambda_b^0 \to \rho K^- \mu^+ \mu^-) $ $ (-5 \pm 5)\% $ $ a_P(\Xi_b^0 \to \rho K^- K^- \pi^+) $ $ (-3 \pm 5)\% $	$\Gamma(\eta'(958) \rightarrow \eta e^+ e^-) / \Gamma_{\text{total}}$	$[b]$ <2.4 × 10 $^{-3}$, CL = 90%		
$ \begin{split} & \Gamma(\eta'(953) \to \eta^{-} e^{-} e^{-})^{\Gamma}_{\text{total}} & [p] < 2.4 \times 10^{-}, \ CL = 90\% & a_{P}(\Lambda_{b}^{0} \to pK^{-}K^{+}K^{-}) & (-1.6 \pm 1.5)\% \\ & \Gamma(\eta'(958) \to \mu^{+} \mu^{-} \pi^{0})/\Gamma_{\text{total}} & [b] < 6.0 \times 10^{-5}, \ CL = 90\% & a_{P}(\Lambda_{b}^{0} \to pK^{-}K^{+}\mu^{-}) & (-5 \pm 5)\% \\ & \Gamma(\eta'(958) \to \mu^{+} \mu^{-} \eta)/\Gamma_{\text{total}} & [b] < (1.5 \times 10^{-5}, \ CL = 90\% & a_{P}(\Lambda_{b}^{0} \to pK^{-}K^{+}\pi^{+}) & (-3 \pm 5)\% \\ & \Gamma(\eta'(958) \to \mu^{+} \mu^{-} \eta)/\Gamma_{\text{total}} & [b] < (1.5 \times 10^{-5}, \ CL = 90\% & a_{P}(\Lambda_{b}^{0} \to pK^{-}K^{-}\pi^{+}) & (-3 \pm 5)\% \\ \end{split} $	$\Gamma(\eta'(958) \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$			
$ \begin{split} & \Gamma(\eta'(953) \rightarrow \eta e^+ e^-)/\Gamma_{\text{total}} & [p] < (.1.4 \times 10^-), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^+\pi^-) & (4\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \eta e^+ e^-)/\Gamma_{\text{total}} & [b] < (.2.4 \times 10^{-3}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^+\pi^-) & (-1.6 \pm 1.5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\pi^0)/\Gamma_{\text{total}} & [b] < (.0 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^+\pi^-) & (-5\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-\eta)/\Gamma_{\text{total}} & [b] < (.1.5 \times 10^{-5}), \ CL = 90\% & a_P(A_b^0 \rightarrow pK^-K^-\pi^+) & (-3\pm 5)\% \\ & \Gamma(\eta'(958) \rightarrow \mu^+\mu^-$	asymmetry parameter for $\eta'(958) \rightarrow \pi^+ \pi^- \gamma$ decay	-0.03 ± 0.04		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\Gamma(\omega(782) \rightarrow 3\pi^0)/\Gamma_{\text{total}}$	$<\!2.3 imes10^{-4},$ CL $=90\%$		
$ \begin{array}{lll} \Gamma(\omega(782) \rightarrow 3\pi^{\circ})/\Gamma_{\text{total}} & <2.3 \times 10^{-4}, \text{ CL} = 90\% & & & & & & & & & & & & & & & & & & &$	$\Gamma(\omega(782) \rightarrow 2\pi^0)/\Gamma_{\text{total}}$	$<\!2.2 imes 10^{-4},\ {\sf CL}=90\%$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{split} & \Gamma(\omega(782) \to \eta \pi^{-})/\Gamma_{\text{total}} & < 2.2 \times 10^{-7}, \text{ CL} = 90\% & n \text{ electric dipole moment} & < 0.18 \times 10^{-25} \text{ ecm, CL} = 90\% \\ & \Gamma(\omega(782) \to 2\pi^{0})/\Gamma_{\text{total}} & < 2.2 \times 10^{-4}, \text{ CL} = 90\% & n \text{ electric dipole moment} & < 1.5 \times 10^{-16} \text{ ecm, CL} = 90\% \\ & \Gamma(\omega(782) \to 3\pi^{0})/\Gamma_{\text{total}} & < 2.3 \times 10^{-4}, \text{ CL} = 90\% & n \text{ electric dipole moment} & < 1.5 \times 10^{-16} \text{ ecm, CL} = 95\% \\ & asymmetry parameter for \eta'(958) \to \pi^{+}\pi^{-}\gamma \text{ decay} & -0.03 \pm 0.04 & n \text{ electric dipole moment} & < 1.5 \times 10^{-16} \text{ ecm, CL} = 95\% \\ & \Gamma(\eta'(958) \to \pi^{0}e^{+}e^{-})/\Gamma_{\text{total}} & [b] < (.1 \times 10^{-3}, \text{ CL} = 90\% & n P^{-}\pi^{+}\pi^{-}) & (-0.6 \pm 0.9)\% \\ & \Gamma(\eta'(958) \to \eta e^{+}e^{-})/\Gamma_{\text{total}} & [b] < (.2 \times 10^{-3}, \text{ CL} = 90\% & n P^{-}\pi^{+}\pi^{-}) & (-1.6 \pm 1.5)\% \\ & \Gamma(\eta'(958) \to \mu^{+}\mu^{-}\pi^{0})/\Gamma_{\text{total}} & [b] < (.6.0 \times 10^{-5}, \text{ CL} = 90\% & n P^{-}\pi^{+}\pi^{-}) & (-1.6 \pm 1.5)\% \\ & \Gamma(\eta'(958) \to \mu^{+}\mu^{-}\pi^{0})/\Gamma_{\text{total}} & [b] < (.5 \times 10^{-5}, \text{ CL} = 90\% & n P^{-}\pi^{+}\pi^{-}) & (-5 \pm 5)\% \\ & \Gamma(\eta'(958) \to \mu^{+}\mu^{-}\eta)/\Gamma_{\text{total}} & [b] < (.5 \times 10^{-5}, \text{ CL} = 90\% & n P^{-}\pi^{+}\pi^{-}) & (-3 \pm 5)\% & (-3 \pm 5)\% & n P^{-}\pi^{-}\pi^{-} & (-3 \pm 5)\% & n P^{-}\pi^{-}\pi^{-}\pi^{-} & (-3 \pm 5)\% & n P^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-} & (-3 \pm 5)\% & n P^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi$				
$ \begin{split} & (\eta \to \pi \ \mu^{-} \mu^{-})^{T} \text{total} & [p] \ \langle 3 \times 10^{-1}, \text{CL} = 90\% & p \text{ electric dipole moment} & \langle 0.021 \times 10^{-23} \text{ ecm} \\ & \langle 2.1 \times 10^{-23} \text{ ecm} & \langle 0.21 \times 10^{-23} \text{ ecm} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 1.5 \times 10^{-16} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 1.5 \times 10^{-16} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 1.5 \times 10^{-16} \text{ ecm}, \text{CL} = 95\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 1.5 \times 10^{-16} \text{ ecm}, \text{CL} = 95\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 95\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 95\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 95\% & n \text{ electric dipole moment} & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 95\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 95\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 95\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 95\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% & n \text{ electric dipole moment} & \langle 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 95\% & n \text{ electric dipole moment} \\ & \langle 0.18 \times 10^{-2} \text{ com}, \text{ electric dipole moment} & \langle 0.18 \times 10^{-5} \text{ com}, electric dipole mo$	$\Gamma(\eta \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Gamma(\eta \rightarrow 3\gamma)/\Gamma_{\text{total}}$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{split} & \Gamma(\eta \to 3\pi^0 \gamma)/\Gamma_{\text{total}} & < 6 \times 10^{-5}, \text{CL} = 90\% & \Gamma(\eta_c(15) \to \pi^0 \pi^0)/\Gamma_{\text{total}} & < 4 \times 10^{-5}, \text{CL} = 90\% \\ & \Gamma(\eta \to 3\gamma)/\Gamma_{\text{total}} & (1.6 \times 10^{-5}, \text{CL} = 90\% & \Gamma(\eta_c(15) \to \pi^0 \pi^0)/\Gamma_{\text{total}} & < 6 \times 10^{-4}, \text{CL} = 90\% \\ & \Gamma(\eta \to \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}} & [b] < 8 \times 10^{-6}, \text{CL} = 90\% & \Gamma(\eta_c(15) \to \pi^0 \pi^0)/\Gamma_{\text{total}} & < 3.1 \times 10^{-4}, \text{CL} = 90\% \\ & \Gamma(\eta_c(15) \to \eta\pi^0)/\Gamma_{\text{total}} & (2.2 \times 10^{-4}, \text{CL} = 90\% & \rho = 6 \text{ctr} Giple \text{ moment} & < 0.021 \times 10^{-23} \text{ ecm} \\ & \Gamma(\omega(782) \to 3\pi^0)/\Gamma_{\text{total}} & < 2.2 \times 10^{-4}, \text{CL} = 90\% & \rho = 6 \text{ctr} Giple \text{ moment} & < 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% \\ & \Gamma(\omega(782) \to 3\pi^0)/\Gamma_{\text{total}} & < 2.3 \times 10^{-4}, \text{CL} = 90\% & \rho = 6 \text{ctr} Giple \text{ moment} & < 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% \\ & \Gamma(\omega(782) \to 3\pi^0)/\Gamma_{\text{total}} & < 2.3 \times 10^{-4}, \text{CL} = 90\% & \rho = 6 \text{ctr} Giple \text{ moment} & < 0.18 \times 10^{-25} \text{ ecm}, \text{CL} = 90\% \\ & \sigma(\pi^{(15)} \to \pi^0 \pi^0)/\Gamma_{\text{total}} & < 2.3 \times 10^{-4}, \text{CL} = 90\% & \rho(\Lambda_b^0 \to \rho\pi^-\pi^+\pi^-) & (-3.7 \pm 1.5)\% \\ & \text{asymmetry parameter for } \eta'(958) \to \pi^+\pi^-\gamma \text{ decay} & -0.03 \pm 0.04 & \rho(\Lambda_b^0 \to \rho\pi^-\pi^+\pi^-) & (-0.6 \pm 0.9)\% \\ & \Gamma(\eta'(958) \to \eta^0 e^+ e^-)/\Gamma_{\text{total}} & [b] < (2.4 \times 10^{-3}, \text{CL} = 90\% & \alpha P(\Lambda_b^0 \to \rho\pi^-\pi^+\pi^-) & (-1.6 \pm 1.5)\% \\ & \Gamma(\eta'(958) \to 3\gamma)/\Gamma_{\text{total}} & (-1.6 \times 10^{-5}, \text{CL} = 90\% & \alpha P(\Lambda_b^0 \to \rho\pi^-\pi^+\pi^-) & (-1.6 \pm 1.5)\% \\ & \Gamma(\eta'(958) \to \eta^+\mu^-\eta')/\Gamma_{\text{total}} & [b] < (-0.\times 10^{-5}, \text{CL} = 90\% & \alpha P(\Lambda_b^0 \to \rho\pi^-\pi^+\pi^-) & (-1.6 \pm 1.5)\% \\ & \Gamma(\eta'(958) \to \mu^+\mu^-\eta')/\Gamma_{\text{total}} & [b] < (-0.\times 10^{-5}, \text{CL} = 90\% & \alpha P(\Lambda_b^0 \to \rho\pi^-\pi^+\pi^-) & (-1.6 \pm 1.5)\% \\ & \Gamma(\eta'(958) \to \mu^+\mu^-\eta')/\Gamma_{\text{total}} & [b] < (-1.5 \times 10^{-5}, \text{CL} = 90\% & \alpha P(\Lambda_b^0 \to \rho\pi^-\pi^+\pi^+) & (-3 \pm 5)\% \\ & \Gamma(\eta'(958) \to \mu^+\mu^-\eta')/\Gamma_{\text{total}} & [b] < (-1.5 \times 10^{-5}, \text{CL} = 90\% & \alpha P(\Lambda_b^0 \to \rho\pi^-\pi^+\pi^+) & (-3 \pm 5)\% \\ & \Gamma(\eta'(958) \to \mu^+\mu^-\eta')/\Gamma_{\text{total}} & [b] < (-1.5 \times 10^{-5}, \text{CL} = 90\% & \alpha P(\Lambda_b^0 \to \rho\pi^-\pi^+\pi^+) & (-3 \pm 5)\% \\ & \Gamma(\eta'(958) \to \mu^+\mu^-\eta')/\Gamma_{\text{total}} & [b] < (-1.5 \times 10^{-5}, \text{CL} = 90\% & \alpha P(\Lambda_b^0 \to \rho\pi^-\pi$	$\Gamma(\eta \rightarrow 2\pi^{0}\gamma)/\Gamma_{\text{total}}$			$<1.1 \times 10^{-4}$, CL = 90%
$ \begin{split} & \Gamma(\eta \to 3\pi^0 \gamma) / \Gamma_{\text{total}} & < 6 \times 10^{-5}, \text{ CL} = 90\% & \Gamma(\eta_c(15) \to \pi^0 \pi^0) / \Gamma_{\text{total}} & < 4 \times 10^{-5}, \text{ CL} = 90\% \\ & \Gamma(\eta \to 3\gamma) / \Gamma_{\text{total}} & < 1.6 \times 10^{-5}, \text{ CL} = 90\% & \Gamma(\eta_c(15) \to \pi^0 \pi^0) / \Gamma_{\text{total}} & < 6 \times 10^{-4}, \text{ CL} = 90\% \\ & \Gamma(\eta \to \pi^0 e^+ e^-) / \Gamma_{\text{total}} & [b] < 8 \times 10^{-6}, \text{ CL} = 90\% & \Gamma(\eta_c(15) \to K^+ K^-) / \Gamma_{\text{total}} & < 6 \times 10^{-4}, \text{ CL} = 90\% \\ & \Gamma(\eta \to \pi^0 \mu^+ \mu^-) / \Gamma_{\text{total}} & [b] < 5 \times 10^{-6}, \text{ CL} = 90\% & \Gamma(\eta_c(15) \to K^+ K^-) / \Gamma_{\text{total}} & < 3.1 \times 10^{-4}, \text{ CL} = 90\% \\ & \Gamma(w(782) \to \eta \pi^0) / \Gamma_{\text{total}} & < 2.2 \times 10^{-4}, \text{ CL} = 90\% & p \text{ electric dipole moment} & < 0.021 \times 10^{-23} \text{ ecm} \\ & \Gamma(w(782) \to 3\pi^0) / \Gamma_{\text{total}} & < 2.2 \times 10^{-4}, \text{ CL} = 90\% & n \text{ electric dipole moment} & < 0.18 \times 10^{-25} \text{ ecm}, \text{ CL} = 90\% \\ & \Gamma(w(782) \to 3\pi^0) / \Gamma_{\text{total}} & < 2.2 \times 10^{-4}, \text{ CL} = 90\% & n \text{ electric dipole moment} & < 1.5 \times 10^{-16} \text{ ecm}, \text{ CL} = 90\% \\ & \Gamma(w(782) \to 3\pi^0) / \Gamma_{\text{total}} & < 2.3 \times 10^{-4}, \text{ CL} = 90\% & n \text{ electric dipole moment} & < 1.5 \times 10^{-16} \text{ ecm}, \text{ CL} = 90\% \\ & \Gamma(w(958) \to \pi^0 e^+ e^-) / \Gamma_{\text{total}} & [b] < (1.4 \times 10^{-3}, \text{ CL} = 90\% & n p (A_b^0 \to p \pi^- \pi^+ \pi^-) & (-0.6 \pm 0.9)\% \\ & \Gamma(n'(958) \to \eta^- e^+ e^-) / \Gamma_{\text{total}} & [b] < (2.4 \times 10^{-3}, \text{ CL} = 90\% & n p (A_b^0 \to p K^- \pi^+ \pi^-) \\ & \Gamma(n'(958) \to \eta^+ e^- \pi^0) / \Gamma_{\text{total}} & (-1.6 \pm 1.5)\% & n p (A_b^0 \to p K^- K^+ \pi^-) & (-1.6 \pm 1.5)\% \\ & \Gamma(n'(958) \to \eta^+ \mu^- \pi^0) / \Gamma_{\text{total}} & [b] < (-0.5 \times 10^{-5}, \text{ CL} = 90\% & n p (A_b^0 \to p K^- K^+ K^-) & (-1.6 \pm 1.5)\% \\ & \Gamma(n'(958) \to \mu^+ \mu^- \pi^0) / \Gamma_{\text{total}} & [b] < (-1.5 \times 10^{-5}, \text{ CL} = 90\% & n p (A_b^0 \to p K^- K^+ \pi^-) & (-5 \pm 5)\% \\ & \Gamma(n'(958) \to \mu^+ \mu^- \pi^0) / \Gamma_{\text{total}} & [b] < (-1.5 \times 10^{-5}, \text{ CL} = 90\% & n p (A_b^0 \to p K^- K^+ \pi^-) & (-5 \pm 5)\% \\ & \Gamma(n'(958) \to \mu^+ \mu^- \eta) / \Gamma_{\text{total}} & [b] < (-1.5 \times 10^{-5}, \text{ CL} = 90\% & n p (A_b^0 \to p K^- K^- \pi^+) & (-3 \pm 5)\% \\ & \Gamma(n'(958) \to \mu^+ \mu^- \eta) / \Gamma_{\text{total}} & [b] < (-1.5 \times 10^{-5}, \text{ CL} = 90\% & n p (A_b^0 \to p K^- K^- \pi^+) $	$\Gamma(\eta \rightarrow \pi^{0}\gamma)/\Gamma_{\text{total}}$		$\Gamma(\eta'(958) \rightarrow \pi^0 \pi^0) / \Gamma_{\text{total}}$	$< 4 imes 10^{-4}$, CL = 90%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				${<}1.8 imes10^{-5}$, CL ${=}$ 90%
$ \begin{split} & (\eta \to \pi^0 \gamma) / \Gamma_{\text{total}} & (a) < 9 \times 10^{-5}, \ CL = 90\% & (f(\eta < 95) \to \pi^0 \pi^0) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < 25^{\circ}) + \pi^0 \pi^0) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < 3\pi^0) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < 3\pi^0) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < 3\pi^0) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < 3\pi^0) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < 3\pi^0) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < 3\pi^0) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < 3\pi^0) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < 3\pi^0) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < (15) \to \pi^+ \pi^-) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < (15) \to \pi^+ \pi^-) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < (15) \to \pi^+ \pi^-) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < (15) \to \pi^+ \pi^-) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < (15) \to \pi^+ \pi^-) / \Gamma_{\text{total}} & (A \times 10^{-4}, \ CL = 90\% & (f(\eta < (15) \to \pi^+ \pi^-) / \Gamma_{\text{total}} & (A \times 10^{-2}, \ CL = 90\% & (f(\eta < (15) \to \pi^+ \pi^-) / \Gamma_{\text{total}} & (A \times 10^{-2}, \ CL = 90\% &$			$\Gamma(\eta \rightarrow 4\pi^0)/\Gamma_{\text{total}}$	${<}6.9 imes10^{-7}$, CL ${=}$ 90%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\Gamma(\eta \rightarrow 2\pi^0)/\Gamma_{\text{total}}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$(0.09 - 0.12) \times 10^{-2}$	${\sf Re}(d_{ au}= au$ electric dipole moment)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	η C-nonconserving decay parameters	$(0.00\pm0.11) \times 10^{-2}$	μ electric dipole moment $ d $	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$<3.1 \times 10^{-6}$, CL = 90%	e electric dipole moment	
$ \begin{array}{cccc} \eta & \text{Conconserving decy parameters} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.09^{+}0.11) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.12^{+}0.11) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.12^{+}0.11) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{quadrant asymmetry} & (0.12^{+}0.11) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{quadrant asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & \text{left-right asymmetry} & (0.9 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & (0.11 \pm 0.04) \times 10^{-2} \\ \pi^+ \pi^- \eta & (0.11 \pm 0.04) \times 10^{-2} \\ \pi^+ \eta & \eta & \eta^- \eta^- \eta^- \\ \pi^+ \eta^- \eta^- \eta^- \eta^- \eta^- \\ \pi^+ \eta^- \eta^- \eta^- \eta^- \eta^- \\ \pi^+ \eta^- \eta^- \eta^- \eta^- \eta^- \eta^- \\ \pi^+ \eta^- \eta^- \eta^- \eta^- \eta^- \eta^- \eta^- \\ \pi^+ \eta^- \eta^- \eta^- \eta^- \eta^- \eta^- \eta^- \eta^- \eta^- \eta^-$	$\Gamma(-0) \rightarrow 2 \rightarrow 1/\Gamma$	$< 2.1 \times 10^{-8}$ CI $= 0.00\%$		

New Technologies for New Physics

 $\Gamma(J/\psi(1S) \rightarrow \gamma \phi)/\Gamma_{\text{total}}$

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 13/44

100% **P**-parity violation is built in the SM Lagrangian

$$\Delta L = -\frac{g}{2\sqrt{2}} \sum_{i} \overline{\psi}_{i} \gamma^{\mu} (1 - \gamma^{5}) (T^{+} W^{+}_{\mu} + T^{-} W^{-}_{\mu}) \psi$$

T.D.Lee, C.N.Yang, **1956**

 $\bar{\psi}\gamma^{\mu}(1-\gamma^5)\psi = 2\bar{\psi}_L\gamma^{\mu}\psi_L$

 $\psi_L = \frac{1 - \gamma^5}{2} \psi \qquad \psi_R = \frac{1 + \gamma^5}{2} \psi$

C.S.Wu, **1957**

Basics of Particle Physics – Track I, Lecture 4 14/44

The SM Lagrangian seems to be **P**-odd but **CP**-even.

 $(V-A)(V-A)^{\dagger} = VV^{\dagger} + VA^{\dagger} + AV^{\dagger} + AA^{\dagger}$

P C

 $(V-A)(V-A)^{\dagger} = VV^{\dagger} - VA^{\dagger} - AV^{\dagger} + AA^{\dagger}$

Combined **CP**-parity conservation hypothesis L.Landau, **1957**

When is it enough?

SOVIET PHYSICS JETP

VOLUME 15, NUMBER 1

AN EXPERIMENTAL INVESTIGATION OF SOME CONSEQUENCES OF CP INVARIANCE IN K⁰₂-MESON DECAYS

M. Kh. ANIKINA, D. V. NEAGU, É. O. OKONOV, N. I. PETROV, A. M. ROZANOVA, and V. A. RUSAKOV

Joint Institute for Nuclear Research

Submitted to JETP editor September 2, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) 42, 130-134 (January, 1962)

In the analysis of 597 K_2^0 decays recorded in a cloud chamber no events corresponding to the decay into two charged pions were found. This result favors the hypothesis that the decay interaction of neutral K mesons is CP-invariant, and the equality (within experimental errors) of the probabilities of leptonic K_2^0 decays with the emission of a π^+ or π^- does not contradict this assumption. Previously obtained data, indicating a large probability for the decays $K_2^0 \rightarrow 3\pi$, are also in agreement with this conclusion. Among the 597 K_2^0 decays no decays into two charged leptons were found.

EVIDENCE FOR THE 2π DECAY OF THE K_2° MESON*[†]

J. H. Christenson, J. W. Cronin,[‡] V. L. Fitch,[‡] and R. Turlay[§] Princeton University, Princeton, New Jersey (Received 10 July 1964)

We would conclude therefore that K_2^0 decays to two pions with a branching ratio $R = (K_0 - \pi^+ + \pi^-)/$

 $(K_2^0 \rightarrow \text{all charged modes}) = (2.0 \pm 0.4) \times 10^{-3}$ where

Cronin Prize share: 1/2

Val Logsdon Fitch Prize share: 1/2

The SM mechanism for **CP** violaton was proposed by **M**. Kobayashi and T.Maskawa in 1974 (as a development of 1960s work by N.Cabibbo).

Main idea: flavour eigenstates (taking part in weak interactions) are nontrivial superpositions of mass eigenstates (solutions to the free part of the Lagrangian). In other words it is impossible to diagonalize simultaneously mass term and interaction term.

M. Kobayashi

T.Maskawa

omplex unitary N×N matrix can be parameterized J-1)/2 Euler angles and (N-1)(N-2)/2 phases.

em 3: prove this!

N=2 the matrix can always be unitary rotated to alent pure real one.

Not for N=3.

Basics of Particle Physics – Track I, Lecture 4 17/44

New Technologies for New Physics

Cabibbo-Kobayashi-Maskawa matrix

h

Convenient parametrization of CKM matrix implies expansion in powers of $\lambda = |V_{us}| + O(\lambda^7) = 0.2272 \pm 0.0010$

$$Y_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

 $\begin{array}{c} d & u \\ & & & & \\ & & & \\ s & c & & & \\ & & & & \\ & & & & \\ b & t & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

 \sim

6 non-diagonal unitary conditions can be represented as triangles on complex plane, the most interesting one is

$$V_{ub} = |V_{ub}|e^{-i\gamma}$$
$$V_{td} = |V_{td}|e^{-i\beta}$$
$$R_b e^{i\gamma} + R_t e^{-i\beta} = 1$$

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 18/44

Current (2020) view of the unitarity triangle

Basics of Particle Physics – Track I, Lecture 4 19/44

0.010

0.008

Δm

sol. w/ cos $2\beta < 0$ (excl. at CL > 0.95

1.5

2.0

Complex phases in the couplings lead to observable CP-asymmetries

$$\mathcal{A}_{\rm CP}(t) \equiv \frac{\Gamma(B_q^0(t) \to f) - \Gamma(\bar{B}_q^0(t) \to f)}{\Gamma(B_q^0(t) \to f) + \Gamma(\bar{B}_q^0(t) \to f)}$$
$$= \left[\frac{\mathcal{A}_{\rm CP}^{\rm dir}(B_q \to f) \cos(\Delta M_q t) + \mathcal{A}_{\rm CP}^{\rm mix}(B_q \to f) \sin(\Delta M_q t)}{\cosh(\Delta \Gamma_q t/2) - \mathcal{A}_{\Delta \Gamma}(B_q \to f) \sinh(\Delta \Gamma_q t/2)}\right]$$

Analogous diagrams are relevant for K^0 and D^0 mesons oscillations

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 20/44

Spontaneous symmetry breaking

Symmetry of the equation may not be a symmetry of the solution to this equation, especially if it realizes extremum of some functional (for example, energy minimum).

In SM masses come from broken symmetries!

Ginzburg-Landau-Higgs mechanism V.L.Ginzburg, L.D.Landau, 1950 P.W.Higgs, 1964; F.Englert, R.Brout, 1964 G.S.Guralnik, C.R.Hagen, T.W.Kibble, 1964

G. 't Hooft, D.Gross, F.Wilczek, H.Politzer, 1973

scale invariance is broken by quantum anomaly

Dimensional transmutation

$$\Lambda = \mu \exp\left(-\frac{2\pi}{b\alpha_s(\mu)}\right)$$

SU(3)

Strong sector of SM, baryon masses at ~1 GeV scale

Basics of Particle Physics – Track I, Lecture 4 21/44

 $L = |(i\partial + A)\Phi|^2 + V(\Phi)$ Electroweak sector of SM; superconductivity;

as if gauge symmetry is "broken" $SU(2)_1 \times U(1)_y \rightarrow U(1)_0$

dual Meissner scenario of confinement

Fundamental symmetries in LHC experiments

General purpose - everything with high enough p_T

Electroweak gauge symmetry breaking pattern: Higgs boson

Space-time symmetries: extra dimensions, black holes, KK-states?

Supersymmetry: particles – superpartners? Dark matter?

Enigma of flavor

CP-symmetry violation: new sources? Baryon asymmetry of the Universe. Indirect search of superpartners.

New state of matter

Chiral symmetry of strong interactions:pattern of restoration? Deconfinement.P-parity violation as interplay of strong and electromagnetic interactions?

Motivations for physics beyond SM

Present status of high energy physics is characterized by undisputable triumph of the Standard Model. We have found Higgs boson, confirmed subtle predictions in electroweak and flavour physics, reached percent level accuracy in strong interaction physics...

...but no signals for New Physics!

"cemetery of theories"

TLAS Exotics Status: May 2020						$\int \int dt = 0$	3.2 – 139) fb ⁻¹	AS Preliminal $\sqrt{s} = 8, 13 \text{ Te}$
Model	ℓ, γ	Jets†	⊏miss		Limit	$\int \mathcal{L} dt = 0$	3.2 - 139) 10	Reference
Model	ι,γ	Jela	Т	JZ utit				neierence
ADD $G_{KK} + g/q$	0 e, µ	1 – 4 j	Yes	36.1	Mp	7.7 TeV	<i>n</i> = 2	1711.03301
ADD non-resonant $\gamma\gamma$	2γ	-	-	36.7	M _s	8.6 TeV	n = 3 HLZ NLO	1707.04147
ADD QBH	_	2 j	-	37.0	M _{th}	8.9 TeV	n = 6	1703.09127
ADD BH high $\sum p_T$	\geq 1 e, μ	≥ 2 j	-	3.2	M _{th}	8.2 TeV	$n = 6$, $M_D = 3$ TeV, rot BH	1606.02265
ADD BH multijet	_	≥ 3 j	-	3.6	M _{th}	9.55 TeV		1512.02586
RS1 $G_{KK} \rightarrow \gamma\gamma$	2γ	. –	-	36.7	G _{KK} mass 4.1 TeV G _{KK} mass 2.3 TeV		$k/\overline{M}_{PI} = 0.1$	1707.04147
Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu q q$	multi-channe 1 e, μ	2j/1J	Yes	36.1 139	G _{KK} mass 2.3 TeV G _{KK} mass 2.0 TeV		$k/\overline{M}_{Pl} = 1.0$ $k/\overline{M}_{Pl} = 1.0$	1808.02380 2004.14636
Bulk RS $g_{KK} \rightarrow tt$		≥ 1 b, ≥ 1J/2		36.1	grk mass 2.0 TeV 3.8 TeV		$\Gamma/m_{Pl} = 1.0$ $\Gamma/m = 15\%$	1804.10823
2UED / RPP		$\geq 2 \text{ b}, \geq 3 \text{ j}$		36.1	KK mass 1.8 TeV		Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$	1803.09678
SSM $Z' \rightarrow \ell \ell$	2 e, µ			139	Z' mass 5.1 Ti	oV/		1903.06248
$\frac{35MZ}{SSMZ' \rightarrow \tau\tau}$	2 c, μ 2 τ	_	_	36.1	Z' mass 2.42 TeV	C V		1709.07242
Leptophobic $Z' \rightarrow bb$	_	2 b	_	36.1	Z' mass 2.1 TeV			1805.09299
Leptophobic $Z' \rightarrow tt$	0 e, µ	$\geq 1 \text{ b}, \geq 2 \text{ J}$		139	Z' mass 2.1 TeV		$\Gamma/m = 1.2\%$	2005.05138
SSM $W' \rightarrow \ell y$	1 e, µ		Yes	139) TeV	1,111 - 112,0	1906.05609
SSM $W' \rightarrow \tau y$	1 τ	_	Yes	36.1	W' mass 3.7 TeV			1801.06992
HVT $W' \rightarrow WZ \rightarrow \ell \nu q q$ model		2j/1J	Yes	139	W' mass 4.3 TeV		$g_V = 3$	2004.14636
HVT $V' \rightarrow WV \rightarrow qqqq$ mode		2 J	_	139	V' mass 3.8 TeV		$g_V = 3$	1906.08589
HVT $V' \rightarrow WH/ZH$ model B	multi-channel			36.1	V' mass 2.93 TeV		$g_V = 3$	1712.06518
HVT $W' \rightarrow WH$ model B	0 e, µ	≥ 1 b, ≥ 2 J		139	W' mass 3.2 TeV		$g_V = 3$	CERN-EP-2020-073
LRSM $W_R \rightarrow tb$	multi-channe	I		36.1	W _R mass 3.25 TeV			1807.10473
LRSM $W_R \rightarrow \mu N_R$	2 μ	1 J	-	80	W _R mass 5.0 Te	eV.	$m(N_R)=0.5~{ m TeV},g_L=g_R$	1904.12679
CI qqqq	-	2 j	-	37.0	٨		21.8 TeV η _{LL}	1703.09127
Cl ℓℓqq	2 e, µ		-	139	Λ		35.8 TeV η ⁻ _{LL}	CERN-EP-2020-066
CI tttt	≥1 <i>e</i> ,µ	≥1 b, ≥1 j	Yes	36.1	۸ 2.57 TeV		$ C_{4t} = 4\pi$	1811.02305
Axial-vector mediator (Dirac DN		1 – 4 j	Yes	36.1	m _{med} 1.55 TeV		$g_q=0.25, g_{\chi}=1.0, m(\chi) = 1 \text{ GeV}$	1711.03301
Colored scalar mediator (Dirac		1 – 4 j	Yes	36.1	m _{med} 1.67 TeV		$g=1.0, m(\chi) = 1 \text{ GeV}$	1711.03301
$VV_{\chi\chi}$ EFT (Dirac DM)	0 e, µ	$1 \text{ J}, \leq 1 \text{ j}$	Yes	3.2	M. 700 GeV		$m(\chi) < 150 \text{ GeV}$	1608.02372
Scalar reson. $\phi \to t\chi$ (Dirac DN	1) 0-1 <i>e</i> , μ	1 b, 0-1 J	Yes	36.1	^m ∳ 3.4 TeV		$y = 0.4, \lambda = 0.2, m(\chi) = 10 \text{ GeV}$	1812.09743
Scalar LQ 1 st gen	1,2 e	$\geq 2 j$	Yes	36.1	LQ mass 1.4 TeV		$\beta = 1$	1902.00377
Scalar LQ 2 nd gen	1,2 μ	≥ 2 j	Yes	36.1	LQ mass 1.56 TeV		$\beta = 1$	1902.00377
Scalar LQ 3 rd gen	2 τ	2 b	-	36.1	LQ ^u mass 1.03 TeV		$\mathcal{B}(\mathrm{LQ}_3^u o b au) = 1$	1902.08103
Scalar LQ 3 rd gen	0-1 e,µ	2 b	Yes	36.1	LO ^a mass 970 GeV		$\mathcal{B}(LQ_3^d \to t\tau) = 0$	1902.08103
VLQ $TT \rightarrow Ht/Zt/Wb + X$	multi-channe	I		36.1	T mass 1.37 TeV		SU(2) doublet	1808.02343
VLQ $BB \rightarrow Wt/Zb + X$	multi-channe	I		36.1	B mass 1.34 TeV		SU(2) doublet	1808.02343
VLQ $T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt + X$	2(SS)/≥3 e,µ	r ≥1 b, ≥1 j	Yes	36.1	T _{5/3} mass 1.64 TeV		$\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$	1807.11883
VLQ $BB \rightarrow Wt/Zb + X$ VLQ $T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt + X$ VLQ $Y \rightarrow Wb + X$		$\geq 1 \text{ b}, \geq 1 \text{ j}$	Yes	36.1	Y mass 1.85 TeV		$\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$	1812.07343
$VLQ B \rightarrow Hb + X$	0 <i>e</i> ,μ, 2 γ		Yes	79.8	B mass 1.21 TeV		$\kappa_B = 0.5$	ATLAS-CONF-2018-02
$VLQ \ QQ \rightarrow WqWq$	1 e, µ	≥ 4 j	Yes	20.3	Q mass 690 GeV			1509.04261
Excited quark $q^* \rightarrow qg$		2 j	-	139		6.7 TeV	only u^* and d^* , $\Lambda = m(q^*)$	1910.08447
Excited quark $q^* \rightarrow q\gamma$	1γ	1 j	-	36.7	q* mass 5.3 1	TeV .	only u^* and d^* , $\Lambda = m(q^*)$	1709.10440
Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^*	-	1 b, 1 j	-	36.1	b* mass 2.6 TeV			1805.09299
Excited lepton ℓ^*	3 e, µ	-	-	20.3	(* mass 3.0 TeV		Λ = 3.0 TeV	1411.2921
Excited lepton v*	3 e,μ,τ	-	-	20.3	v* mass 1.6 TeV		$\Lambda = 1.6 \text{ TeV}$	1411.2921
Type III Seesaw	1 e, μ	≥ 2 j	Yes	79.8	N ⁰ mass 560 GeV		(ATLAS-CONF-2018-02
LRSM Majorana v	2 µ	2 j	-	36.1	N _R mass 3.2 TeV		$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$	1809.11105
Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$	2,3,4 e, µ (SS) –	-	36.1	H ^{±±} mass 870 GeV		DY production	1710.09748
Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi charged particles	3 e,μ,τ	-	-	20.3	H ^{±±} mass 400 GeV		DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$	1411.2921
Multi-charged particles Magnetic monopoles	-	_	_	36.1	multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV		DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1812.03673
	-	-		34.4	monopole mass 2.37 TeV		by production, $ g = 1g_D$, spin 1/2	1905.10130
	s = 13 TeV	$\sqrt{s} = 13$	TeV					,
	artial data	full da			10 ⁻¹ 1	1	0	

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

New Technologies for New Physics

MISI

LHCP 2020

Why do we think that there is physics beyond the SM?

There are two lines of argument:

1. Experimental facts which cannot be explained in SM framework, among them:

- Neutrino masses and oscillations
- Dark matter
- Baryon asymmetry of the Universe
- ...

...

2. There are many «why» and «how» in the SM:

• What is the ultimate ultraviolet scale? If it is the Planck scale ~10¹⁹ GeV, how is electroweak scale so much smaller than UV scale?

- Why do masses and couplings in SM have the values they have?
- Why are lefts doublets and rights singlets?
- Why 3 generations? Why CKM hierarchy & CP?
- What about gravity?

So, SM is definitely not a closed theory. But is it a consistent theory?

Landau poleAnomaliesNaturalness

but the things are arranged in such a tricky way in the SM, that (almost) all is cured...

Example I: Landau pole. Quantum electrodynamics is not consistent at ultra-high energies. However, numerically, this scale $\Lambda = m_e \exp(1/b\alpha)$ is far beyond reach since

$$\alpha = \frac{1}{137}$$

Problem 4: estimate it.

• ...

Example II: cancellation of anomalies. There are dangerous divergencies in the SM which cannot be renormalized and should just cancel for consistency of the theory. They do indeed, in quite nontrivial way.

New Technologies for New Physics

Links quarks and leptons!

Example III: Naturalness

Imagine you have built a 4-parameter physical model of some class of phenomena. Fitting this model to experimental observables, you found the following values for these 4 parameters (A, B, C, D): A = 1.4 B = 0.7 C = 2.6 $D = 3 \times 10^{28}$

In modern science such models are known as unnatural, or fine-tuned. One may expect that physically relevant is not the parameter **D**, which is so strongly outside the ballpark of the other three ones, but some other parameter, perhaps hiding **D** inside it.

If one thinks of the SM as some effective theory valid at scales smaller than UV cutoff, then experiments indicate that $\Lambda_{UV}\gg m_{weak}$

At the same time, naturalness suggests

 $\mathcal{L}_{SM} = \mathcal{L}^{d \leq 4} + \frac{1}{\Lambda_{UV}} \mathcal{L}^{d=5} + \frac{1}{\Lambda^2} \mathcal{L}^{d=6} + \dots$

Quantum instability of the Higgs mass

 $\Lambda_{\scriptscriptstyle UV} \lesssim 500 \, {\rm GeV}$

This was the main theoretical motivation for searches of supersymmetry, since there is no quadratic divergence in quantum corrections to the Higgs mass is supersymmetric extension of SM.

«New physics» indeed comes at $m_{
ho}=770\,{
m MeV}$

$$m_{\pi^+}^2 - m_{\pi^0}^2 = \frac{3lpha}{4\pi} \frac{m_{
ho}^2 m_{a_1}^2}{m_{a_1}^2 - m_{
ho}^2} \log\left(\frac{m_{a_1}^2}{m_{
ho}^2}\right)$$
 (A.Das, '67)

Observable Higgs mass corresponds to metastability of the SM vacuum

(I. V. Krive, A. D. Linde, N. Cabibbo, L. Maiani, G. Parisi, R. Petronzio, M.Lindner, H.B.Nielsen, C.Froggatt, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto, A. Strumia, J. R. Espinosa, M. Quiros, G.Altarelli and many others)

Coincidence? Don't think so...

Standard Model Criticality Prediction: Top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV.

C.D. Froggatt

Department of Physics and Astronomy Glasgow University, Glasgow G12 8QQ, Scotland

H.B. Nielsen

The Niels Bohr Institute Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

Abstract

Imposing the constraint that the Standard Model effective Higgs potential should have two degenerate minima (vacua), one of which should be - order of magnitudewise - at the Planck scale, leads to the top mass being 173 ± 5 GeV and the Higgs mass 135 ± 9 GeV. This requirement of the degeneracy of different phases is a special case of what we call the multiple point criticality principle. In the present work we use the Standard Model all the way to the Planck scale, and do not introduce supersymmetry or any extension of the Standard Model gauge group. A possible model to explain the multiple point criticality principle is lack of locality fundamentally.

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 31/44

Why the energy is so important

Astrophysical evidences for dark matter...

Expected:

Expected: $v(R) \propto \frac{1}{\sqrt{R}}$

Lensing signal (direct mass $mass_{cluster} = \sum mass_{galaxies}$ measurement) confirms **Observed:** $v(R) \approx const$ **Observed:** 10^2 times more mass other observations confining ionized gas

instability turned tiny density fluctuations into all visible structures

(from A.Boyarsky)

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 33/44

Over next few decades, important advancements in both astrophysical and terrestrial probes will test WIMPs and Dark Sectors

M. Lisanti's Talk

(Granada-2019 meeting)

MISIS

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 34/44

Neutrinos are massless in the SM, but massive in Nature

$$P_{\nu_{\alpha} \to \nu_{\beta}}(t) = |\langle \nu_{\beta} | \nu(t) \rangle|^{2} = \delta_{\alpha\beta} - 4 \sum_{i>j} \Re(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2}\left(\frac{\Delta m_{ij}^{2} L}{4E}\right) + 2 \sum_{i>j} \Im(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin\left(\frac{\Delta m_{ij}^{2} L}{2E}\right)$$

Analogously to quarks, mass eigenstates of neutrinos are superpositions of flavour eigenstates – and vice versa. However, contrary to the quark case, neutrino oscillations is a long distance phenomenon for mass differencies in sub-**eV** range:

$$\frac{\Delta m_{ij}^2 L}{4E} \approx 1.267 \frac{\Delta m_{ij}^2 [\text{eV}^2] \times L[\text{km}]}{E[\text{GeV}]} \qquad \Delta m_{ij}^2 = m_i^2 - m_j^2$$

The pattern of quark mixing, encoded in Cabibbo-Kobayashi-Maskawa (CKM) matrix

$$V_{\rm CKM} = \begin{pmatrix} 0.97446 \pm 0.00010 & 0.22452 \pm 0.00044 & 0.00365 \pm 0.00012 \\ 0.22438 \pm 0.00044 & 0.97359^{+0.00010}_{-0.00011} & 0.04214 \pm 0.00076 \\ 0.00896^{+0.00024}_{-0.00023} & 0.04133 \pm 0.00074 & 0.999105 \pm 0.000032 \end{pmatrix}$$

seems to be drastically different from the pattern of neutrino mixing, encoded in Pontekorvo-Maki-Nakagawa-Sakata (PMNS) matrix:

$$|U|_{3\sigma} = \begin{pmatrix} 0.799 \rightarrow 0.844 & 0.516 \rightarrow 0.582 & 0.141 \rightarrow 0.156 \\ 0.242 \rightarrow 0.494 & 0.467 \rightarrow 0.678 & 0.639 \rightarrow 0.774 \\ 0.284 \rightarrow 0.521 & 0.490 \rightarrow 0.695 & 0.615 \rightarrow 0.754 \end{pmatrix}$$

We do not know why

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 36/44

What to do when interaction is very weak...

Age of the Universe is $14 imes 10^9\,$ years

?
$$N_{\rm A}$$
 = 6,022 140 857(74)·10²³ моль⁻¹.
! It is easy to have 10⁽¹⁵⁻²⁰⁾ absolutely identical atoms $\delta N \approx \frac{N_0 \log 2}{T_{1/2}} \delta t$

Example: proton decay search

SuperKamiokande – the underground neutrino experiment with 50 ktons of water and 13 000 photosensors

50 000 tons ~ 7x10³³ protons. $\tau/B_{p\to\nu K^+} > 5.9 \times 10^{33}$ years

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 38/44

gamma

Dark Sectors

What is meant by a dark sector ? A Hidden sector, with Dark matter, that talks to us through a Portal

Portal can be the Higgs boson itself or New Messenger/s

Dark sector has dynamics which is not fixed by Standard Model dynamics

- \rightarrow New Forces and New Symmetries
- \rightarrow Multiple new states in the dark sector, including Dark Matter candidates

Interesting, distinctive phenomenology Long-Lived Particles Feebly interacting particles (FIP's)

(Granada-2019 meeting)

Basics of Particle Physics – Track I, Lecture 4 39/44

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 40/44

Intensity frontier physics reach

New Technologies for New Physics

(picture of Z.Ligeti) Basics of Particle Physics – Track I, Lecture 4 41/44

Technical Challenges in Energy-Frontier Colliders proposed

		Ref.	E (CM) [TeV]	Lumino sity [1E34]	AC- Power [MW]	Cost-estimate Value* [Billion]	в [T]	E: [MV/m] (GHz)	Major Challenges in Technology
С	FCC- hh	CDR	~ 100	< 30	580	24 or +17 (aft. ee) [BCHF]	~ 16		High-field SC magnet (SCM) - <u>Nb3Sn</u> : Jc and Mechanical stress Energy management
C hh	SPPC	(to be filled)	75 – 120	TBD	TBD	TBD	12 - 24		High-field SCM - <u>IBS</u> : Jcc and mech. stress Energy management
С	FCC- ee	CDR	0.18 - 0.37	460 – 31	260 – 350	10.5 +1.1 [BCHF]		10 – 20 (0.4 - 0.8)	High-Q SRF cavity at < GHz, Nb Thin-film Coating Synchrotron Radiation constraint Energy efficiency (RF efficiency)
C	CEPC	CDR	0.046 - 0.24 (0.37)	32~ 5	150 – 270	5 [B\$]		20 – (40) (0.65)	High-Q SRF cavity at < GHz, LG Nb-bulk/Thin- film Synchrotron Radiation constraint High-precision Low-field magnet
L	ILC	TDR update	0.25 (-1)	1.35 (– 4.9)	129 (- 300)	4.8- 5.3 (for 0.25 TeV) [BILCU]		31.5 – (45) (1.3)	High-G and high-Q SRF cavity at GHz, Nb-bulk Higher-G for future upgrade Nano-beam stability, e+ source, beam dump
C	CLIC	CDR	0.38 (- 3)	1.5 (- 6)	160 (- 580)	5.9 (for 0.38 TeV) [BCHF]		72 – 100 (12)	Large-scale production of Acc. Structure Two-beam acceleration in a prototype scale Precise alignment and stabilization. timing
A. Yamamoto, 190513bb				*Cost estimates	are com	nonly for "Valu	e" (material) only.		

MISIS

Physical requirements directly transfer to technological ones

(Granada-2019 meeting)

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 42/44

Instead of conclusion

We need a clue where New Physics is

The word «clue» derives from «clew», an Old English word for a ball of string. It came to mean 'a hint that aids a solution' through allusion to the Greek legend of Theseus.

The same story is with the Russian word «клубок», which means a ball of thread.

Notice that Ariadne's string could not help Theseus to find the Minotaur in the Labyrinth, but was extremely helpful to follow the right way out.

«The days of "guaranteed" discoveries or of no-lose theorems in particle physics are over, at least for the time being. But the big questions of our field remain wide open (hierarchy problem, flavour, neutrinos, DM, BAU, etc.).This simply implies that, more than for the past 30 years, future HEP's progress is to be driven by experimental exploration, possibly renouncing/reviewing deeply rooted theoretical bias(es).»

M. Mangano

New Technologies for New Physics

Basics of Particle Physics – Track I, Lecture 4 43/44

Homework problems

- Problem 1 slide 8
- Problem 2 slide 11
- Problem 3 slide 17
- Problem 4 slide 26
- Problem 5 (slide 38): how many decays will be detected for one year in one gram of osmium?
- Problem 6 (slide 42): estimate the proton energy in Future Circular Collider (FCC-hh) for parameters from the table.
- Problem 7: Imagine you are responsible for strategic allocation of financial resources in physics of fundamental properties of matter for the next 10 years worldwide (about \$10B-\$12B). Formulate (in written form) how you would proceed.

